Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 52 | 4 | 413-423

Article title

Cytoplazmatyczna męska sterylność roślin - mechanizmy biologiczne i molekularne

Content

Title variants

EN
Cytoplasmic male sterility of plants - biological and molecular mechanisms

Languages of publication

PL EN

Abstracts

EN
Summary Cytoplasmic male sterility (CMS), the trait resulting in the formation of non-functional microspores or pollen grains, is commonly used by plant breeders for hybrid seeds production. Numerous studies aimed at the explanation of both biological and molecular mechanisms leading to the pollen abortion have been carried out in the past thirty years. Among the cytological events accompanying CMS, the most pronounced one concerns the tapetum - tissue surrounding differentiating pollen mother cells (PMC) - and involves its abnormal vacuolization, fusion of cells into multinuclear syncytia, and disturbances in the time of the programmed tapetum death. Development of PMC, depending upon the species, is arrested either during meiosis or in postmeiotic phase, and is usually related to the failure in the deposition of the microspore (pollen) wall. Ultrastructural and morphometric analysis clearly showed that mitochondria in both tapetum and PMC are seriously affected in CMS plants,which is reflected in changes of their number, size and structure. Molecular analyses indicated that several structural features of mitochondrial DNA (mtDNA) might be related to CMS expression. The results of RFLP studies and of hybridizations with specific mitochondrial probes revealed, that the organization of several genes such as atpA, atp6, atp9, coxI, coxII, coxIII and cob is different in sterile plants in comparison with their fertile counterparts. Despite that the altered mitochondrial organization typifies all plant tissues, the disturbances in development could only be detected in anthers. This probably results from exceptionally high energetic demand of anther tissues due to the numerous subsequent cell divisions accompanied by several cycles of DNA replication. The wide interest of breeders in the application of CMS plants led to the development of several techniques of male sterility induction, including the production of transgenic plants with altered expression of either nuclear or mitochondrial genes, the transfer of mitochondria from sterile to fertile plants, and formation of new "cybrid" plants with rearranged mtDNA.

Keywords

Journal

Year

Volume

52

Issue

4

Pages

413-423

Physical description

Dates

published
2003

Contributors

  • Zakład Genetyki i Hodowli Roślin, Instytut Hodowli i Aklimatyzacji Roślin, Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Polska
  • Zakład Genetyki i Hodowli Roślin, Instytut Hodowli i Aklimatyzacji Roślin, Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Polska

References

  • AKAGI H., TAGUCHI T., FUJIMURA T., 1995. Stable inheritance and expression of the CMS traits introduced by asymmetric protoplast fusion. Theor. Appl. Genet. 91, 563-567.
  • BACKERT S., NIELSEN B. N., BÖRNER T., 1997. Themystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci. 2, 477-583.
  • BERGMAN P., EDQVIST J., FARBOS I., GLIMELIUS K., 2000. Male-sterile tobacco display abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. PlantMol. Biol. 42, 531-544.
  • BINO R. J., 1985. Ultrastructural aspects of cytoplasmic male sterility in Petunia hybrida. Protoplasma 127, 230-240.
  • BINO R. J., 1986. Cytoplasmic male sterility in Petunia hybrida: A structural and histochemical analysis. Rozprawa doktorska, University of Wageneingen, The Netherlands.
  • BROWN G. G., ZHANG M., 1995. Mitochondrial plasmids: DNA and RNA. [W]: Molecular Biology of Plant Mitochondria. LEVINGS C. S. III, VASIL I. K. (red.), Kluwer Academic Publishers, Dordrecht, 61-91.
  • CANAL DE LA L., CROUZILLAT D., QUITIER F., LEDOIGT G., 2001. A transcriptional alternation on the atp9 is associated with a sunflower male-sterile cytoplasm. Theor. Appl. Genet. 102, 1185-1189.
  • CONKLIN P. L., HANSON M. R., 1994. Recombination of plant mitochondrial genomes. [W:] Homologous recombination and gene silencing in plants. PASZKOWSKI J. (red.).Kluwer Academic Publishers, Dordrecht, 61-68.
  • CONLEY C., HANSON M., 1994. Tissue-specific protein expression in plant mitochondria. Plant Cell 6, 85-91.
  • DUVICK D. N., 1965. Cytoplasmic pollen sterility in corn. [W]: Advances in Genetics. Caspari E. W., Thoday J. (red.). Academic Press, New York, 13, 1-56.
  • FAN Z., STEFANSSON B. R., 1986. Influence of temperature on sterility of two cytoplasmicmale sterility systems in rape (Brassica napus L.). Can. J. Plant Sci. 66, 21-227.
  • FANG G. H., MCVETTY P. B. E., 1989. Inheritance of male fertility restoration and allelism of restorer genes for the Polima cytoplasmicmale sterility system in oilseed rape. Genome 32, 1044-1047.
  • FAURON C., CASPER M., GAO Y., MOORE B., 1995. The maize mitochondrial genome: dynamic, yet functional. Trends Genet. 11, 228-235.
  • FOLKERTS O., HANSON M., 1991. Three copies of a single recombination repeat occur on the 443-kb master circle of the Petunia hybrida 3704 mitochondrial genome. Nucleic Acids Res. 17, 7345-7357.
  • FRAGOSO L., NICHOLS S. E., LEVINGS C. S., 1989. Rearrangements in maize mitochondrial genes. Genome 31, 160-168.
  • GOETZ M., GODT D. E., GUIVARCH A., KAHMANN U., CHRIQUI D., ROITSCH T., 2001. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. PNAS 98, 6522-6527.
  • GUAN H. X. ZHU Y. G., LAN S. Y., XU Z. X., 2001. Ultrastructural localization of ATPase activity in fertile and sterile anther of rice (Oryza sativa L. cv. Marxie). Shi Yan ShengWu Xue Bao 34, 323-327.
  • HANSON M. R., 1991. Plant mitochondrial mutations andmale sterility. Annu. Rev.Genet., 1, 173-179.
  • HE S., LYZNIK A., MACKENZIE S., 1995. Pollen fertility restoration by nuclear gene Fr in CMS bean: nuclear- directed alteration of amitochondrial population. Genetics 139, 995-962.
  • HERNOULD M., SUHARSONO, ZABALETA E., CARDE J.P., LITVAK S., ARAYA A., MOURAS A., 1998. Impairment of tapetum and mitochondria in engineered male- sterile tobacco plants. Plant. Mol. Biol. 36, 499-508.
  • HORN R., KÖHLER R. H., ZETSCHE K., 1991. A mitochondrial 16-kDa protein is associated with cytoplasmic male sterility in sunflower. Plant. Mol. Biol. 7, 29-36.
  • HORN R., 2002. Molecular diversity ofmale sterility inducing and male-fertile cytoplasms in the genus Helianthus. Theor. Appl. Genet. 104, 562-570.
  • HORNER H. T., ROGERS M. A., 1974. A comparative light and electron microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile pepper (Capsicum annuum). Can. J. Bot. 3, 435-441.
  • IWABUCHI M., KYOZUKA J., SHIMAMOTO K., 1993. Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmicmale sterile rice. EMBOJ. 12, 1437-1446.
  • IWAHASHI M., NAKAZONO M., KANNO A., SUGINO K., ISCHIBASHI T., HIRAI A., 1992. Genetic and physical maps and clone bank of mitochondrial DNA from rice. Theor. Appl. Genet. 84, 275-279.
  • JANSKA H., MACKENZIE S. A., 1993. Unusual mitochondrial genome organization in cytoplasmic male sterile common bean and the nature of cytoplasmic reversion to fertility.Genetics 135, 869-879.
  • KALANTIDIS K., WILSON Z. A., MULLIGAN B. J., 2002. Mitochondrial gene expression in stamens is differentially regulated during male gametogenesis in Arabidopsis. Sex. Plant Reprod. 14, 229-304.
  • KAPOOR S., KOBAYASHI A., TAKATSUJI H., 2002. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollenabortion inpetunia. Plant Cell 14, 2353-2367.
  • KAUL M. L. H., 1988. Male sterility in higher plants. [W:] Monographs on theoretical and applied genetics. FRANKEL R., GROSSMANN M., LISKENS H. F., MALIGA P., RILEY R. (red.). Springer Berlin Heidelberg New York, 132-169.
  • KENNELL J. C., PRING D. R., 1989. Initiation and processing of atp6, T-urf13 and orf 221 transcripts from mitochondria of T cytoplasm maize. Mol. Gen. Genet. 216, 16-24.
  • KÖHLER R. H., HORNR., LÖSSL A., ZETSCHE K., 1991. Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with atpA gene. Mol. Gen. Genet. 227, 369-376.
  • KRISHNASAMY S., MAKAROFF C. A., 1994. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. Plant Mol. Biol. 26, 935-946.
  • KUBO T., NISHIZAWA S., MIKAMI T., 1999. Alterations in organization and transcription of the mitochondrial genome of cytoplasmic male sterile sugar beet (Beta vulgaris L.). Mol. Gen. Genet. 262, 283-290.
  • KUBO T., NISHIZAWA S., SUGAWARA A., ITCHODA N., ESTIATI A., MIKAMI T., 2000. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys(GCA). Nucleic Acid Res. 28, 2571-2576.
  • LASER K. D., LERSTEN N. R., 1972. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot. Rev. 3, 425-454.
  • LEE S. J., WARMKE H. E., 1979. Organelle size and number of fertile and T-cytoplasmic male-sterile corn. Am. J. Bot. 66, 141-148.
  • LEVINGS III CH. S., 1993. Thoughts on cytoplasmicmale sterility in cms-T maize. Plant Cell 5, 1285-1290.
  • LIU X. C., DICKINSON H. G. 1989. Cellular energy levels and their effect on male cell abortion in cytoplasmically male sterile lines of Petunia hybrida. Sex. Plant Reprod. 2, 167-172.
  • MAJEWSKA-SAWKA A., JASSEM B., MACEWICZ J., RODRIGUEZ GARCIA M. I., 1990. [W:] Polen, Esporas y Sus Aplicaciones. An electron microscopic study of anther structure inmale-fertile and male-sterile sugar beets: tapetum development. BLANCA G., RODRIGUEZ- GARCIA M. I. (red.) 57-63.
  • MAJEWSKA-SAWKA A., RODRIGUEZ-GARCIA M.I., NAKASHIMA H., JASSEM B., 1993. Ultrastructural expression of cytoplasmic male sterilityin sugar beet (Beta vulgaris L.). Sex. Plant Reprod. 6, 22-32.
  • MARIANI C., GOLDBERG R. B., LEEMANS J., 1991. Engineered male sterility in plants. Symp. Soc. Exp. Biol. 45, 271-279.
  • MELCHERS G., MOHRI Y., WATANABE K., WAKABAYASHI S., HARADA K., 1992. One-step generation of cytoplasmic male sterility by fusion of mitochondrial-inactivated tomato protoplasts with nuclear-inactivated Solanum protoplasts. PNAS 89, 6832-6836.
  • MENASSA R., L´HOMME Y., BROWN G. G., 1999. Post-transcriptional and developmental regulation of a CMS- associated mitochondrial gene region by a nuclear restorer gene. Plant J. 17, 491-499.
  • NAKASHIMA H., 1978. Physiological and morphological studies on the cytoplasmic male sterility of some crops. J. Fac. Agric. Hokkaido Univ. 59, 17-58.
  • NISHIZAWA S., KUBO T., MIKAMI T., 2000. Variable tandem repeat loci in the mitochondrial genomes of beets. Curr. Genet. 37, 34-38.
  • NIVISON H. T., HANSON M. R., 1989. Identification of a mitochondrial protein associated withmale sterility in petunia. Plant Cell 1, 1121-1130.
  • OHMASA M.,WATANABE Y.,MURATA N., 1976. A biochemical study of cytoplasmically male-sterility in corn. Alternation of cytochrome oxidase and malate de- hydrogenase activities during pollen development. Jap. J. Breed. 26, 40-50.
  • OVERMAN M. A.,WARMKE H. E., 1972. Cytoplasmic male sterility in sorghum. II. Tapetal behavior in fertile and sterile anthers. J. Hered. 63, 227-234.
  • PEREZ-PRAT E., VAN LOOKEREN CAMPAGNE M. M., 2002. Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci. 7, 199-203.
  • PRING D. R.., LONSDALE D. M., 1985.Molecular biology of higher plant mitochondrial DNA. Int. Rev. Cytol. 97, 1-46.
  • SADOCH Z., GOC A.,WIERZCHOSŁAWSKI R., DALKE L., 2003. Cytoplasmic male sterility in hybrids of sterile wild beet (Beta vulgaris ssp. maritima) and O-type fertile sugar beet (Beta vulgaris L.): molecular analysis of mitochondrial and nuclear genomes. Mol. Breed 11, 137-148.
  • SAKAI T., IMAMURA J., 1990. Intergeneric transfer of cytoplasmic male sterility between Raphanus sativus (cms line) and Brassica napus through cytoplas- protoplast fusion. Theor. Appl. Genet. 80, 421-427.
  • SCHNABLE P. S.,WISE R. P., 1989. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3, 175-180.
  • SCHUSTER W., BRENNICKE A., 1994. The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45, 61-78.
  • SCOLES G. J., EVANS L. E., 1979. Pollen development in male-fertile and cytoplasmicmale-sterile rye. Can. J. Bot. 57, 2782-2790.
  • SENDA M., HARADA T., MIKAMI T., SAGIURA M., KINOSHITA T., 1991. Genomic organization and sequence analysis of the cytochrome oxidase subunit II gene from normal and male-sterile mitochondria in sugar beet. Curr. Genet. 19, 175-181.
  • SINGH M., BHALLA P. L., XU H., SINGH M. B., 2003. Isolation and charcterization of a flowering plant male gametic cell-specific promoter. FEBS Letters 8, 47-52.
  • SKUZA L. J., 2000. Charakterystyka molekularna mitochondrialnego DNA żyta uprawnego (Secale cereale L.). Post. Biol. Kom. 27, 185-196.
  • SMART C. J. MONEGER F., LEAVER C. J., 1994. Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 6, 811-825.
  • STEINBORN R., SCHWABE W., WEIHE A., ADOLF K., MELZ G., BÖRNER T., 1993. A new type of cytoplasmic male sterility in rye (Secale cereale L.): analysis of mitochondrialDNA. Theor. Appl.Genet. 85, 822-824.
  • UNSELD M., MARIENFELD J. R., BRANDT P., BRENNICKE A., 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet. 15, 57-61.
  • WALTERS T. W., MUTSCHLER M. A., EARLE E., 1992. Protoplast fusion-derived Ogura male sterile cauliflower with cold tolerance. Plant Cell Rep. 10, 624-628.
  • WEIHE A., DUDAREVA N. A., VEPREV S. G., MALETSKY S. I., MELZER R., SALGANIK R. I., BÖRNER TH., 1991. Molecular characterization of mitochondrial DNA of different subtypes ofmale-sterile cytoplasms of the sugar beet Beta vulgaris L. Theor. Appl. Genet. 82, 11-16.
  • WEN L., CHASE CH. D., 1999. Pleiotropic effects of a nuclear restorer of-fertility locus on mitochondrial transcripts in male-fertile and S male sterile maize. Curr. Genet. 35, 521-526.
  • WISE R. P.,WILL C. L., SCHNABLE P. S., 1989. Mutator - induced mutations of the rf1 nuclear fertility restorer of T-cytoplasm maize alter the accumulation of T-urf13 mitochondrial transcripts. Genetics 143, 1383-1394.
  • XUE Y., COLLIN S.,DAVIES D. R., THOMAS C. M., 1994. Differential screening ofmitochondrial cDNA libraries from male-fertile and cytoplasmic male-sterile sugar- beet reveals genome rearrangements at atp6 and atpA loci. Plant Mol. Biol. 25, 91-103.
  • YUI R, IKETANI S, MIKAMI T, KUBO T., 2003. Antisense inhibition of mitochondrial puryvate dehydrogenase E1alpha subunit in anther tapetum causes male sterility. Plant J. 34, 57-66.
  • ZABALA G., GABAY-LAUGHNAN S. J., LAUGHNAN J. R., 1997. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147, 847-1136.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv52p413kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.