Preferences help
enabled [disable] Abstract
Number of results
2003 | 52 | 4 | 379-398
Article title

Genetyczna kontrola kwitnienia roślin okrytonasiennych

Title variants
Genetic control of flowering of angiosperm plants
Languages of publication
Summary Plants have developed mechanisms to integrate both endogenous and environmental cues for regulation of flowering time. When environmental and physiological (e.g. photoperiod, temperature) (e.g. stage of development) conditions are appropriate plants undergo the floral transition and become reproductive. The timing of flowering initiation depends on the balanced expression of many different genes that are regulated by both endogenous and environmental factors. As a result of physiological, genetic, and molecular analysis of Arabidopsis thaliana mutants altered in flowering time the existence of a long-promotion pathway, a gibberellic-acid promotion pathway, as well as vernalization and autonomous pathway were discovered and characterized. A few dozen of genes invilved in flower induction of Arabidopsis were identified. Some of them can integrate two or three flowering pathways. Floral repression is likely to be the principal mechanism for maintaining vegetative development. Floral repressor inhibit the floral signaling pathways at various levels. Some of genes involved in vernalization and photoperiodic flower induction encode putative chromatin-associated proteins. They probably function as epigenetic silencers that repress promotion of flowering, and thereby maintain vegetative growth. The complete genome sequences of two plant species; Arabidopsis thaliana (long-day dicot) and Oryza sativa (short-day monocot) have been published recently. Since that time, comparative genomics andmolecular genetics on photoperiod-induced flowering process became possible. Using this approach some differences between long- and short-day plants were established at the molecular level.
Physical description
  • Zakład Biotechnologii, Instytut Biologii Ogólnej i Molekularnej, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
  • Zakład Fizjologii i Biologii Molekularnej Roślin, Instytut Biologii Ogólnej i Molekularnej, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
  • ADAMS S. R., PEARSON S., HADLEY P., 2001. Improving quantitative flowering models through a better understanding of the phase of photoperiod sensitivity. J. Exp. Bot. 52, 655-662.
  • ALVAREZ J., GULI C. L., YU X. -H., SMYTH D. R., 1992. Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2, 103-116.
  • ARABIDOPSIS GENOME INITIATIVE, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
  • AUBERT D., CHEN L., MOON Y.-H., MARTIN D., CASTLE L. A., YANG C. -H., SUNG Z. R., 2001. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13, 1865-1875.
  • AUKERMAN M. J., AMASINO R. M., 1998. Floral induction and florigen. Cell 93, 491-494.
  • BAGNALL D. J., 1992. The control of flowering of Arabidopsis thaliana by light, vernalisation and gibberellins. Aust. J. Plant. Physiol. 19, 401-409.
  • BAROUX C., SPILLANE C., GROSSNIKLAUS U., 2002. Genomic imprinting during seed development. Adv. Genet. 46, 165-214.
  • BATTEY N. H., TOOKE F., 2002. Molecular control and variation in the floral transition. Curr. Opin. Plant Biol. 5, 62-68.
  • BERNIER G., 1988. The control of floral evocation and morphogenesis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 39, 175-219.
  • BIRVE A., SENGUPTA A.K., BEUCHLE D., LARSSON J., KENNISON J.A., RASMUSON-LESTANDER A., MULLER J., 2001. Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128, 3371-3379.
  • BITONTI M. B., COZZA R., CHIAPPETTA A., GIANNINO D., RUFFINI CASTIGLIONE M., DEWITTE W., MARIOTTI D., VAN ONCKELEN H., INNOCENTI A. M., 2002. Distinct nuclear organization, DNA mathylation pattern and cytokinin distribution mark juvenile, juvenile- like and adult vegetative apicalmeristems in peach (Prunus persica (L.) Batsch). J. Exp. Bot. 53, 1047-1054.
  • BLĂZQUEZ M. A., GREEN R., NILSSON O., SUSSMAN M. R., WEIGEL D., 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791-800.
  • BONHOMME F., KURZ B., MELZER S., BERNIER G., JACQMARD A., 2000. Cytokinin and gibberellins activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J. 24, 103111.
  • BRADLEY D., RATCLIFFE O., CINCENT C., CARPENTER R., COEN E., 1997. Influorescence commitment and architecture in Arabidopsis. Science 275, 80-83.
  • BURN J. B., BAGNALL D. J., METZGER J. D., DENNIS E. S., PEACOCK W. J., 1993. DNA methylation, vernalization, and the initiation of flowering. Proc. Natl. Acad. Sci. USA 90, 287-291.
  • CHAILAKHYAN M. K., 1936. On the hormonal theory of plant development. C.R. (Dokl) Acad. Sci. USSR 3, 443-447.
  • CHANDLER J.,WILSON A., DEAN C., 1996. Arabidopsismutants showing an altered response to vernalization. Plant J. 10, 637-644.
  • CHAUDHURY A. M., KOŁTUNOW A., PAYNE T., LUO M., TUCKER M. R.,DENNIS E. S., PEACOCK W. J., 2001. Control of early seed development. Annu. Rev. Cell Dev. Biol. 17, 677-699.
  • COLASANTI J., YUAN Z., SUNDERSAN V., 1998. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93, 593-603.
  • CORBESIER L., LEJEUNE P., BERNIER G., 1998. The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206, 131-137.
  • COUPLAND G., 1997. Regulation of flowering by photoperiod in Arabidopsis. Plant Cell Environ. 20, 785-789.
  • DĄBROWSKA G., 2001. Poszukiwanie genów zaangażowanych w fotoperiodyczną indukcje kwitnienia Pharbitis nil. Rozprawa doktorska. Uniwersytet Mikołaja Kopernika, Toruń.
  • DĄBROWSKA G., GOC A., TRETYN A., 2002. Fotoperiodyczna indukcja kwitnienia roślin krótkiego dnia. Wiad. Bot. 46, 45-54.
  • DURDAN S. F., HERBERT R. J., ROGERS H. J., FRANCIS D., 2000. The determination time of the carpel whorl is differentially sensitive to carbohydrate supply in Pharbitis nil. Plant Physiol. 123, 189-200.
  • FINNEGAN E. J., GENGER R. K., KOVAC K., PEACOCK W. J., DENNIS E. S.. 1998. DNA methylation and the promotion of flowering by vernalization. Proc. Natl. Acad. Sci. USA 95, 5824-5829.
  • FRANSZ P. F., DE JONG J. H., 2002. Chromatin dynamics in plants. Curr. Opin. Plant Biol. 5, 560-567.
  • GARNER W. W., ALLARD H. A., 1920. Effect of the relative lenght of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18, 506-553.
  • GAUDIN V., LIBAULT M., POUTEAU S., JUUL T., ZHAO G., LEFEBVRE D., GRANDJEAN O. 2001. Mutation in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis.Development 128, 4847-4858.
  • GENDALL A. R., LEVY Y. Y.,WILSON A., DEAN C., 2001. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535.
  • GISEL A., HEMPEL F.D., BARELLA S., ZAMBRYSKI P., 2002. Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 1713-1717.
  • GOFF S. A., RICKE D., LAN T.-H. i współaut., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100.
  • GOODRICH J., PUANGSOMLEE P., MARTIN M., LONG D., MEYEROWITZ E. M., COUPLAND G., 1997. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386, 44-51.
  • GUO H., YANG H., MOCKLER T. C., LIN C., 1998. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360-1363.
  • HAMMAD I., VAN TIENDEREN P. H., 1997. Natural variation in flowering time among populaions of the crucifer Arabidopsis thaliana. Plant Spec. Biol.12, 15-23.
  • HAYAMA R., COUPLAND G., 2003. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol. 6, 13-19.
  • HOUSSA P., BERNIER G., KINET J. M., 1991. Qualitative and quantitative analysis of carbohydrates in leaf exudate of the short-day plant, Xanthium strumarium L. during flowering transition. J. Plant Physiol. 138, 24-28.
  • IZAWA T., OIKAWA T., SUGIYAMA N., TANISAKA T., YANO M., SHIMAMOTO K., 2002. Phytochrome mediates the external light signal to repress FT ortologs in photoperiodic flowering of rice. Genes Dev. 16: 2006-2020.
  • IZAWA T., TAKAHASHI Y., YANO M., 2003. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6, 113-120.
  • JAWORSKI K., SZMIDT-JAWORSKA A., TRETYN A., KOPCEWICZ J., 2003a. Biochemical evidence for a calcium- dependent protein kinase from Pharbitis nil and its involvement in photoperiodic flower induction. Phytochemistry 62, 1047-1055.
  • JAWORSKI K., SZMIDT-JAWORSKA A., TRETYN A., KOPCEWICZ J., 2003b. Calmodulin from Pharbitis nil: purification and characterization. Biol. Plant., w druku.
  • KAKUTANI T., JEDDELOH J. A., FLOWERS S. K.,MUNAKATA K., RICHARDS E. J., 1996. Developmental abnormalities and epimutations associated with DNA hyper- methylation mutations. Proc. Natl. Acad. Sci. USA 93, 12406-12411.
  • KASS S. U., PRUSS D., WOLFFE A. P., 1997. Does DANN methylation repress transcription? Trends Genet. 13, 444-449.
  • KINET J.-M., 1993. Environmental, chemical, and genetic control of flowering. Hort. Rev. 15, 38-47.
  • KREKULE J., 1979 Stimulation and inhibition of flowering. [W:] La Physiologie de la Floraison. CHAMPAGNAT P., JACQUES R. (red.). CNRS, Paris, 19-57.
  • KOORNNEEF M. N., DERVEEN J. H., 1991. A genetic and physiological analysis of late-flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66.
  • KOORNNEEF M., HANHART C. J., VAN DER VEEN J. H., 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66.
  • KOORNNEEF M., ALONSO-BLANCK C., PEETERS A. J. M., SOPPE W., 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 49, 345- 370.
  • KOPCEWICZ J., TRETYN A., 1998. Physiological and cytochemical investigations on photoperiodic flower induction in Pharbitis nil. Flowering Newslett. 25, 264.
  • KYOZUKA J., KONISHI S., NEMOTO K., IZAWA T., SHIMAMOTO K., 1998. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc. Natl Acad. Sci USA 95, 1979-1982.
  • LANG A., 1965. Physiology of flower initiation. [W:] Encyclopedia Plant Physiology. RUHLAND W. (red.). Springer-Verlag, Berlin, 15, 1379-1536.
  • LANGRIDGE J., 1957. Effect of day-length and gibberelic acid on the flowering of Arabidopsis. Nature 180, 36-37.
  • LAY-YEE M., SACHS R. M., REID M. S., 1987. Changes in cotyledon mRNA during floral induction of Pharbitis nil cv. Violet. Planta 171, 104-109.
  • LEE I., AUKERMAN M.J.,GORE S. L., LOHMAN K. N.,MICHAELS S. D., WEAVER L. M., JOHN M. C., FELDMANN K. A., AMASINO R. M., 1994. Isolation of LUMINI DEPENDENTS; a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6, 75-83.
  • LEE H., SUH S. -S., PARK E., CHO E., AHN J. H., KIM S. -G., LEE J. S., KWON Y. M., LEE I., 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 2366-2376.
  • LEE H. J., XIONG L.M., GONG Z. Z., ISHITANI M., STEVENSON B., ZHU J. K., 2001. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 15, 912-924.
  • Sucrose increase during floral induction in the phloem sap collected at the apical part of the shoot of the long-day plant Sinapis alba L. Planta 190, 71-74.
  • LEVY Y. Y., MESNAGE S., MYLNE J. S., GENDALL A. R., DEAN C., 2002. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243-246.
  • LIU J., YU J., KENDE H., MCINTOSH L., ZEEVAART J. A. D., 1998. A molecular approach toward understanding photoperiodic induction of flowering. Annu. Meeting Am. Soc. Plant Physiol. Plant Biol., 11019.
  • LOHE A. R., CHAUDHURY A., 2002. Genetic and epigenetic progress in seed development. Curr. Opin. Plant Biol. 5, 19-25.
  • LUSSER A., 2002. Acetylated, methylated, remodeled: chromatin states for gene regulation. Curr. Opin. Plant Biol. 5, 437-443.
  • MACKNIGFT R., BONCROFT I., PAGE T., LISTER C., SCHMIDT R., LOVE K., WESTPHAL L., MURPHY G., SHERSON S., COBBETT C., DEAN C., 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737-745.
  • MEYER P., 2001. Chromatin remodelling. Curr. Opin. Plant Biol. 4, 457-462.
  • MICHAELS S. D., AMASINO R. M., 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but bot responsiveness to vernalization. Plant Cell 13, 935-941.
  • MITROVIĆ A., ŽIVANOWIĆ B., ĆULAFIĆ L. J., 2000. The effects of photoperiod, glucose and gibberelic acid on growth in vitro and flowering of Chenopodium murale. Biol. Plant. 43, 173-177.
  • MOCKLER T. C., GUO H., YANG H., DUONG H., LIN C., 1999. Antagonistic action of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073-2082.
  • MOON Y.-H., CHEN L., PAN R.-L., CHANG H.-S., ZHU T., MAFFEO D., SUNG Z. R., 2002. EMF repression of embryo and flower development in Arabidopsis. XIII International Conference on Arabidopsis Research, 11-22.
  • MOURADOV A., CREMER F., COUPLAND G., 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell (Suppl.), S111-S130.
  • O´NEILL S. D., ZHANG X. S., ZHENG C. C., 1994. Dark and circadian regulation of mRNA accumulation in the short-day plant Pharbitis nil. Plant Physiol. 104, 569-580.
  • OGAS J., KAUFMANN S., HENDERSON J., SOMERVILLE C., 1999. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 13839-13844.
  • OGAWA Y., 1993. Movement of floral stimulus in the cotyledon and petiole of Pharbitis nil seedlings. Bul. Fac. Bioresources Mie. Univ. 10, 200-207.
  • ONO M., OKAZAKI M., HARADA H., UCHIMIYA H., 1988. In vitro translated popypeptides of different organs of Pharbitis nil Chois, strain Violet under flower-inductive and non-inductive conditions. Plant Sci. 58, 1-7.
  • ONO M., SAGE-ONO K., INONE M., KAMADA H., HARADA H., 1996. Transient increase in the level of mRNA for germin-like protein in leaves of the short-day plant Pharbitis nil during the photoperiodic induction of flowering. Plant Cell Physiol. 37, 855-861.
  • ONO M., SAGE-ONO K., YASUI M., OKAZAKI M., HARADA H., 1993. Changes in polipeptydes in Pharbitis nil cotyledons during the first flower-inductive photoperiod. Plant Sci. 89, 135-145.
  • PIŇERIO M., COUPLAND G., 1998. The control of flowering time and floral identity in Arabidopsis. Plant Physiol. 117, 1-8.
  • PIŇERIO M., GOMEZ-MENA C., SCHAFFER R., MARTINEZZAPATA J. M., COUPLAND G., 2003. EARLY BOLTING IN SHORT DAYS is related to chromatin remodelling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell 15, 1552-1562.
  • PUTTERILL J., ROBSON F., LEE K., SIMON R., COUPLAND G., 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857.
  • SAGE-ONO K.,ONO M., HARADA H., KAMADA H., 1998a. Accumulation of a clock-regulated transcript during flower-inductive darkness in Pharbitis nil. Plant Physiol. 116, 1479-1485.
  • SAGE-ONO K., ONO M., HARADA H., KAMADA H., 1998b. Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis. Plant Cell. Physiol. 39, 357-360.
  • SAMACH A., ONOUCHI H., GOLD S. E., DITTA G. S., SCHWARZSOMMER Z., YANOFSKY M. F., COUPLAND G., 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616.
  • SCHOMBURG F. M., PATTON D. A., MEINKE D. W., AMASINO R. M., 2001. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-cecognition motifs. Plant Cell 13, 1427-1436.
  • SIMPSON G. G., DEAN C., 2002. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285-289.
  • SOPPE W. J. J., JACOBSEN S. E., ALONSO-BLANCO C., JACKSON J. P., KAKUTANI T., KOORNRNNEEF M., PEETERS A. J. M., 2000. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6, 791-802.
  • SUAREZ-LOPEZ P., WHEATLEY K., ROBSON F., ONOUCHI H., VELVERDE F., COUPLAND G., 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120.
  • SUN T. P., KAMIYA Y., 1994. The Arabidopsis ga1 locus encodes the cyclase ent-kaurene synthetase-A of gibberellin biosynthesis. Plant Cell 6, 1509-1518.
  • SUNG Z. R., CHEN L., MOON Y. -H., LERTPIRIYAPONG K., 2003. Mechanisms of floral repression in Arabidopsis. Curr. Opin. Plant Biol. 6, 29-35.
  • SZMIDT-JAWORSKA A., JAWORSKI K., TRETYN A., KOPCEWICZ J., 2003a. Cyclic GMP in the photoperiodic flower induction of Pharbitis nil. J. Plant Physiol., w druku.
  • SZMIDT-JAWORSKA A., JAWORSKI K., TRETYN A., KOPCEWICZ J., 2003b. Biochemical evidence for cGMP-regulated protein kinase in Pharbitis nil. Phytochemistry 63, 635-642.
  • SMITH J. G., HILL S. R., BALDWIN J. P., 1995. Plant chromatin structure and post-translational modifications. Crit. Rev. Plant Sci. 14, 299-328.
  • TAKADA S., KOTAKE T., GOTO K., 2002. Arabidopsis TERMINAL FLOWER2 (TLF2) gene encodes an HP1-like protein and negatively regulates FT expression. XIII International Conference on Arabidopsis Research, 11-22.
  • TALON M., KOORNNEEF M., ZEEVAART J. A. D., 1990. Accumulation of c19-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana (L) Heynh. Planta 182, 501-505.
  • THIGPEN S. P., SACHS R. M., 1985. Changes in ATP in relation to floral induction in Pharbitis nil. Physiol. Plant. 65, 156-162.
  • THOMAS B., VINCE-PRUE D., 1997. Photoperiodism in plants. Academic Press, London.
  • TRETYN A., 1999. Calcium-dependent signal transduction pathways in plants - phytochrome mechanism of action as an example. Polish J. Pharmacol. 51, 145-151.
  • TRETYN A., KOPCEWICZ J., 1999a. Mechanizmy kwitnienia roślin. I. Uwarunkowania fizjologiczno- środowiskowe. Post. Biol. Kom. 26, 231-248.
  • TRETYN A., KOPCEWICZ J., 1999b. Mechanizmy kwitnienia roślin. II. Genetyczna i molekularna kontrola indukcji kwitnienia. Post. Biol. Kom. 26, 249-266.
  • TRETYN A., CYMERSKI M., CZAPLEWSKA J., ŁUKASIEWICZ H., PAWLAK A., KOPCEWICZ J., 1990. Calcium and photoperiodic flower induction in Pharbitis nil. Physiol. Plant. 80, 388-392.
  • TRETYN A., CZAPLEWSKA J., CYMERSKI M., KOPCEWICZ J., KENDRICK R. E., 1994. The mechanism of calcium action on flower induction in Pharbitis nil. J. Plant Physiol. 144, 562-568.
  • TRETYN A., KENDRICK R. E., FUJIOKA S., SAKURAI A., 1996. Cytochemical and histochemical characterization of cotyledonary bodies from Pharbitis nil seedlings. Protoplasma 191, 205-214.
  • TRETYN A., ŁUKASZEWSKA H., KOPCEWICZ J., OLEŃCZUK A., NOWAKOWSKA A., 1997. The role of cotyledons in photoperiodic flower induction of Pharbitis nil. [W:] Travelling shot on plant development, GREPPIN H., PENEL C., SIMON P. (red.), Univ. Geneva Press, Geneva, 51-62.
  • TRETYN A., DĄBROWSKA G., BALCEREK M., TREJGELL A. J., 2002. Involvement of gene expression in photoperiodic flower induction of Pharbitis nil. Botanikertagung, Freiburg, 04-09.
  • TRETYN A., GŁOWACKA K., GALOCH E., KASPRZAK K., KULIKOWSKA-GULEWSKA H., KOPCEWICZ J., 2003. Investigation on the chemical nature of flower-inducing factor(s) in short-day plant Pharbitis nil. [W:] Phytohormones in plant biotechnology and agriculture. MACHACKOVA I. (red.). Kluwer Academic Press, Dordrecht, w druku.
  • VERBSKY M. L., RICHARDS E. J., 2001. Chromatin remodelling in plants. Curr. Opin. Plant Biol. 4, 494-500.
  • WAGNER D., 2003. Chromatin regulation of plant development. Curr. Opin. Plant Biol. 6, 20-28.
  • WAGNER D., MEYEROWITZ E. M., 2002. SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr. Biol. 12, 85-94.
  • WELLER J. L., REID J. B., TAYLOR S. A.,MURFET S. A.,MURFET I. C., 1997. The genetic control of flowering in pea. Trends Plant Sci. 2, 412-418.
  • WILSON R. N., HECKMAN J. W., SOMERVILLE C. R., 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100, 403-408.
  • XU Y. L., LI L., WU K. Q., PEETERS A. J. M., GAGE D. A., ZEEVAART J. A. D., 1995. The ga5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase - molecular-cloning and functional expression. Proc. Natl. Acad. Sci USA 92, 6640-6644.
  • YANO M., KATAYOSE Y., ASHIKARI M., YAMANOUCHI U., MONNA L., FUSE T., BABA T., YAMAMOTO K., UMEHARA Y., MAGAMURA Y., SASAKI T., 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473-2484.
  • YANO M., KOJIMA S., TAKAHASHI Y., LIN H., SASAKI T., 2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 127, 1425-1429.
  • YANOVSKY M., KAY S.A., 2001. Signaling networks in the plant circadian system. Curr. Opin. Plant Biol. 4, 429-435.
  • YOFSHIDA N., YANAI Y., CHEN L., KATO Y., HIRATSUKA J., MIWA T., SUNG Z. R., TAKAHASHI S., 2001. EMBRYONIB FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13, 2471-2481.
  • YU J., HU S.,WANG J. iwspółaut., 2002.Adraft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92.
  • ZAGATTA M. T., HIKS K. A., JACOBS C. I., YOUNG J. C., HANGARTEN R. P., MEEKS-WAGNER D. R., 1996. The Arabidopsis ELF3 gene regulates vegetative photomorpho-genesis and the photoperiodic induction of flowering. Plant J. 10, 691-702.
  • ZHENG C.C., BUI A.Q., O´NEILL S.D., 1993. Abundance of an mRNA encoding a high mobility group DNA-binding protein is regulated by light and an endogenous rhythm. PlantMol. Biol. 23, 813-823.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.