Preferences help
enabled [disable] Abstract
Number of results
2003 | 52 | 2-3 | 331-340
Article title

Strategie konstruowania roślin transgenicznych odpornych na nicienie

Title variants
Strategies for construction of nematode resistant plants
Languages of publication
Summary Plant-parasitic nematodes are very important pests of many crops causing up to 20-30% losses of agricultural yield. Their traditional control relies on extremely toxic nematicides and breeding resistant cultivars. As both methods have major disadvantages (environmental pollution, long time-course of breeding a new cultivar with resistance which is often broken by the pathogen after several years), an approach based on genetic engineering seems to be a promising alternative. Reproductory success of the nematodes depends on induction and development of a feeding site composed of modified plant cells. In a compatible plant/pathogen interaction, nematode secretions (pathogenicity factors) released consecutively into the root change the morphogenetic programme of plant cells via modification of expression of selected plant genes which enables nematode´s migration, induction of the feeding site and its proper development into an effective feeding structure. Different strategies to stop or to impair pathogen development may be applied which interfere with nematode´s development at different points of its life cycle. This approach has been adopted by an international research project "NONEMA" carried out within 5th Framework Programme of the European Community for Research, Technological Development and Demonstration. First, pathogenicity factors are sought, recognised and evaluated employing such methods as subtractive hybridisation using cDNA libraries, comparative cDNA-AFLP, microsequencing of nematode secretions, dsRNA-mediated mRNA inactivation of candidate genes in nematodes. The factors thought to be involved in: modification/dissolving of plant cell walls during migration, protection against active oxygen species produced upon infection by the host and induction of feeding cells are search for. The selected proteins - pathogenicity factors will be afterwards inactivated by "plantibodies" - specific immunoglobulins synthesised in transgenic plants. This should minimise pathogen´s success during early stages of infection. Second, plant proteins up-regulated upon infection are being identified using RT-PCR, in situ hybridisation and immunolocalisation. These genes/proteins involved in reactivation of cell cycle (necessary for induction of feeding site development) or in modification of plant cell walls (including local dissolutions of the walls) in developing feeding sites of cyst nematodes will be inactivated using "plantibodies" or inhibited at mRNA level using antisense constructs in transgenic plants. To maximise the chances of public acceptance for genetically engineered plants special attention is paid to use promoters with minimised expres- sion outside the area (plant tissues) of their action. Some feeding site-specific promoters are already available but they are being improved by employing promoter deletion techniques and also new ones are sought.
Physical description
  • Katedra Botaniki, Wydział Rolniczy SGGW, Rakowiecka 26/30, 02-528 Warszawa, Polska
  • Katedra Botaniki, Wydział Rolniczy SGGW, Rakowiecka 26/30, 02-528 Warszawa, Polska
  • Katedra Botaniki, Wydział Rolniczy SGGW, Rakowiecka 26/30, 02-528 Warszawa, Polska
  • Katedra Botaniki, Wydział Rolniczy SGGW, Rakowiecka 26/30, 02-528 Warszawa, Polska
  • Katedra Botaniki, Wydział Rolniczy SGGW, Rakowiecka 26/30, 02-528 Warszawa, Polska
  • BARTELS N., VAN DER LEE F. M., KLAP J., GODDIJN O. J., KARIMI M., PUZIO P., GRUNDLER F. M., OHL S. A., LINDSEY K., ROBERTSON L., ROBERTSON W. M., VAN MONTAGU M., GHEYSEN G., SIJMONS P. C., 1997. Regulatory sequences of Arabidopsis drive reporter gene expression in nematode feeding structures. Plant Cell 9, 2119-2134.
  • BRUMMELL D. A., HALL B. D., BENNETT A. B., 1999. Antisense suppression of tomato endo-1,4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol. Biol. 40, 615-622.
  • DE ALMEIDA ENGLER J., DE VLEESSCHUWER V., BURSSENS S., CELENZA J. L. Jr., INZE D., VAN MONTAGU M., ENGLER G., GHEYSEN G., 1999. Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11, 793-808.
  • DOERNER P., J.-E., YOU R., STEPPUHN J., LAMB C., 1996. Control of root growth and development by cyclin expression. Nature 380, 520-523.
  • ESCOBAR C., DE MEUTTER J., ARISTIZABAL F. A., SANZ-ALFEREZ S., DEL Campo F. F., BARTELS N., VAN DER EYCKEN W., SEURINCK J., VAN MONTAGU M., GHEYSEN G., FENOLL C., 1999. Isolation of the LEMMI9 gene and promoter analysis during a compatible plant-nematode interaction. Mol. Plant Microbe Interact. 12, 440-449.
  • FAVERY B., LECOMTE P., GIL N., BECHTOLD N., BOUCHEZ D., DALMASSO A., ABAD P., 1998. RPE, a plant gene involved in early developmental steps of nematode feeding cells. EMBO J. 17, 6799-6811.
  • GHEYSEN G., DE ALMEIDA ENGLER J., VAN MONTAGU M., 1997. Cell cycle regulation in nematode feeding sites. [W:] Cellular and molecular aspects of plant-namatode interactions. FENOLL C., GRUNDLER F. M. W., OHL S. A. (red.). Kluwer, Dordrecht, 120-132.
  • GOLINOWSKI W., GRUNDLER F. M. W., SOBCZAK M., 1996. Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194, 103-116.
  • GOLINOWSKI W., MAGNUSSON C., 1991. Tissue response induced by Heterodera schachtii (Nematoda) in susceptible and resistant white mustard cultivars. Can. J. Bot. 69, 53-62.
  • GOVERSE A., BIESHEUVEL J., WIJERS G.-J., GOMMERS F. J., BAKKER J., SCHOTS A., HELDER J., 1998. In planta monitoring of the activity of two constitutive promoters, CaMV 35S and TR2´, in developing feeding cells induced by Globodera rostochiensis using green fluorescent protein in combination with confocal laser scanning microscopy. Physiol. Mol. Plant Pathol. 52, 275-284.
  • GOVERSE A., DE ENGLER J. A., VERHEES J., VAN DER KROL S., HELDER J. H., GHEYSEN G., 2000a. Cell cycle activation by plant parasitic nematodes. Plant Mol. Biol. 43, 747-761.
  • GOVERSE A., OVERMARS H., ENGELBERTINK J., SCHOTS A., BAKKER J., HELDER J., 2000b. Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Mol. Plant Microbe Interact. 13, 1121-1129.
  • GRUNDLER F. M. W., SOBCZAK M., GOLINOWSKI W., 1998. Formation of wall openings in root cells of Arabidopsis thaliana following infection by the plant-parasitic nematode Heterodera schachtii. Eur. J. Plant Pathol. 104, 545-551.
  • HANSEN E., HARPER G., MCPHERSON M. J., ATKINSON H. J., 1996. Differential expression patterns of the wound- inducible transgene wun-1-uidA in potato roots following infection with either cyst or root- knot nematodes. Physiol. Mol. Plant Pathol. 48, 161-170.
  • LASHBROOK C. C., GIOVANNONI J. J., HALL B. D., FISCHER R. L., BENNETT A. B., 1998. Transgenic analysis of tomato endo- β-1,4- glucanase gene function. Role of cel1 in floral abscission. Plant J. 13, 303-310.
  • MONTGOMERY M. K., XU S., FIRE A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15502-15507.
  • NGO H., TSCHUDI C., GULL K., ULLU E., 1998. Double- stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95, 14687-14692.
  • OPPERMAN C. H., TAYLOR C. G., CONKLING M. A., 1994. Root- knot nematode-directed expression of a plant root-specific gene. Science 263, 221-223.
  • PUZIO P. S., LAUSEN J., HEINEN P., GRUNDLER F. M., 2000. Promoter analysis of pyk20, a gene from Arabidopsis thaliana. Plant Sci. 157, 245-255.
  • ROSE J. K., BENNETT A. B., 1999. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 4, 176-183.
  • ROSSO M. N., FAVERY B., PIOTTE C., ARTHAUD L., DE BOER J. M., HUSSEY R. S., BAKKER J., BAUM T. J., ABAD P., 1999. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol. Plant Microbe Interact. 12, 585-91.
  • SMANT G., STOKKERMANS J. P., YAN Y., DE BOER J. M., BAUM T. J.,WANG X., HUSSEY R. S., GOMMERS F. J., HENRISSAT B., Davis E.L., HELDER J., SCHOTS A., BAKKER J., 1998. Endogenous cellulases in animals: isolation of beta- 1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95, 4906-4911.
  • SOBCZAK M., GOLINOWSKI W., GRUNDLER F. M. W., 1997. Changes in the structure of Arabidopsis thaliana roots induced during development of males of the plant parasitic nematode Heterodera schachtii. Europ. J. Plant Pathol. 103, 113-124.
  • STIEKEMA W. J., BOSCH D., WILMINK A., DE BOER J. M., SCHOUTEN A., ROOSIEN J., GOVERSE A., SMANT G., STOKKERMANS J., GOMMERS F. J., SCHOTS A., BAKKER J., 1997. Towards plantibody-mediated resistance against nematodes. [W:] Cellular and molecular aspects of plant-namatode interactions. FENOLL C, GRUNDLER F. M. W. OHL S. A. (red.). Kluwer, Dordrecht, 262-271.
  • TAVLADORAKI P., BENVENUTO E., TRINCA S., DE MARTINIS D., CATTANEO A., GALEFFI P., 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469-72.
  • TOPPING J. F., LINDSEY K., 1997. Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell 9, 1713-1725.
  • WYSS U., GRUNDLER F. M. W., MŰNCH A., 1992. The parasitic behaviour of 2-nd stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica 38, 98-111.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.