Preferences help
enabled [disable] Abstract
Number of results
2003 | 52 | 2-3 | 283-298
Article title

Roślinne mechanizmy tolerancji na toksyczne działanie metali ciężkich

Title variants
Mechanisms of plant tolerance to heavy metals
Languages of publication
Summary Plants have evolved complex of protective mechanisms that allow them to grow and develop in heavy metal-contaminated environments. They show different degrees of tolerance to heavy metals, depending on the species, population or even developmental stage of the plant. This is a review of literature data on the anatomical, physiological and biochemical mechanisms responsible for the formation of "the heavy metal tolerance syndrome " in plants. Numerous factors have been involved in development of heavy metal tolerance. The main ones encompass processes occurring on the root surface of the plants that lead to restriction of heavy metal absorption, mycorrhizae, transport of heavy metals through the apoplastic pathway, transport from the epidermis to the vascular cylinder, transport from the root to the shoot, and transport across the plasma membrane to the cytoplasm. Plants are able to detoxify heavy metal ions inside the cell with phytochelatins, metallothioneins or organic acids. Other factors involved in, and contributing to heavy metal tolerance include excretion of heavy metals from the cytoplasm to the apoplast and from plant organs, specific mineral-handling pathways and water regimes of plants, as well as the ability to synthesize heavy metal-resistant enzymes. Knowledge of the fundamentals of heavy metal tolerance will aid in the effective use of plants in phytoremediation.
Physical description
  • Zakład Morfogenezy Roślin, Instytut Biologii Eksperymentalnej Roślin, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska
  • ANDERSON C. W. N., BROOKS R. R., CHIARUCCI A., LACOSTE C. J., LEBLANC M., ROBINSON B. H., SIMCOCK R., STEWART R. B., 1999 Phytomining for nickel, thallium and gold. J. Geochem. Explor. 67, 407-415.
  • ANTOSIEWICZ D. M., 1992 Adaptation of plants to environment polluted with heavy metals. Acta Soc. Bot. Pol. 61, 281-289.
  • ANTOSIEWICZ D. M.,1993. Mineral status of dicotyledonous plants crop plants in relation to their constitutional tolerance to lead. Environ. Exp. Bot. 33, 575-589.
  • ANTOSIEWICZ D. M., 1995. The relationship between constitutional and inducible Pb-tolerance and tolerance to mineral deficits in Biscutella laevigata and Silene inflata. Environ. Exp. Bot. 35, 55-69.
  • ANTOSIEWICZ D. M., WIERZBICKA M., 1999. Localisation of lead in Allium cepa L. cells by electron microscopy. J. Microscop. 194, 195, 139-146.
  • ARAZI T., KAPLAN B., SUNKAR R., FROMM H., 2000. Cyclic- nucleotide- and Ca +2 /calmodulin-regulated channels in plants: targets for manipulating heavy- metal tolerance, and possible physiological roles. Biochem. Soc. Trans. 28, 471-475.
  • BAKER A. J. M.,WALKER P. L.,1990. Ecophysiology of metal uptake by tolerant plants. [W:] Heavy metal tolerance in plants: evolutionary aspects. SHAW J. (red.). CRC Press, Inc. Boca Raton, Florida, 155-177.
  • BAKER A. J. M., GRANT C. J., MARTIN M. H., SHAW S. C., WHITEBROOK J., 1986. Induction and loss of cadmium tolerance in Holcus lanatus L. and other grasses. New Phytol. 102, 575-587.
  • BARCELO J., POSCHENRIEDER Ch.,1999. Structural and ultrastructural changes in heavy metal exposed plants. [W:] Heavy metal stress in plants(from molecules to ecosystems). PRASAD M. N. V., HAGEMEYER J. (red.). Springer-Verlag Berlin, Heidelberg, 183-205.
  • BOROVIK A. S., 1990. Characterisation of metal ions in biological systems. [W:] Heavy metal tolerance in plants: evolutionary aspects. SHAW A. J. (red.). CRP Press Inc, Boca Raton, Florida, 3-5.
  • CHEUNG W.Y., 1984. Calmodulin: its potential role in cell proliferation and heavy metal toxicity. Fed. Proceed. 43, 2995-2999.
  • CLEMENS S., 2001. Molecular mechanism of plant metal homeostasis and tolerance. Planta 212, 475-486.
  • CLEMENS S., PALMGREN M. G., KRÄMERU., 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7, 309-315
  • COBBET C. S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol.123, 825-833.
  • COLLARD J. M., MATAGNE R. F.,1990. Isolation and genetic analysis of Chlamydomonas reinhardtii strain resistant to cadmium. Appli. Environ. Microbiol. 56, 2051-2055.
  • CUYPERS A., VANGRONSVELD J., CLIJSTERS H., 2002. Peroxidases in roots and primary leaves of Phaseolus vulgaris. Copper and zinc phytotoxicity: a comparison. J. Plant Physiol. 159, 869-876.
  • DAHMANi-MULLER H., VAN OORT F., GÉLIE, BALABANE M., 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environment. Pollut. 109, 231-238.
  • DIAZ G., AZCON AGUILAR C., HONRUBIA M., 1996. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180, 241-249.
  • ERNST W. H. O., SCHAT H., VERKLEIJ J. A., 1990. Evolutionary biology of metal resistance in Silene vulgaris. Evol. Trends Plants 4, 45-51.
  • FOULKES E. C., 2000. Transport of toxic metals across cell membranes. Proc. Soc. Exp. Biol. Med. 223, 234-240.
  • GARALD C. J., WILKINS D. A., 1981. Effect of calcium on the uptake and toxicity of lead in Hordeum vulgare L. and Festuca ovina L. New Phytol. 87, 581-593.
  • GEEBELEN W., VANGROSFELD J., ADRIANO D. C., VAN POUCKE L. C., CLIJSTERS H., 2002. Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol. Plant. 115, 377-384.
  • GONELLI C., GALARDI F., GABBRIELLI R., 2001. Nickel and copper tolerance and toxicity in three Tuscan population of Silene paradoxa. Physiol. Plant. 113, 507-514.
  • GONZALES-CHAVES C., HARRIS P. J., DODD J., MEHARG A. A., 2002. Arbuscular mycorrhizal fungi confer menhanced arsenate resistance on Holcus lanatus. New Phytol. 155,163-171.
  • HABERMANN E., CROWELL K., JANICKI P., 1983. Lead and other metals can substitute for Ca +2 in calmodulin. Toxicology 54, 61-70.
  • HAGEMEYER J., 1999. Ecophysiology of plant growth under heavy metal stress [W:] Heavy metal stress in plants (from molecules to ecosystems). PRASAD M. N. V., HAGEMEYER J. (red.). Springer-Verlag, Berlin, Heidelberg, 157-181.
  • HERMENS H., HARTOG P. R., BOOKUM W. M., VERKLEIJ J. A. C., 1993. Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol. 103, 1305-1309.
  • HEUMANN H. G, 2002. Ultrastructural localization of zinc in zin-tolerant Armeriamaritima ssp. halleri by autometallography. J Plant Physiol. 159, 191-203.
  • JENTSCHKE G., GOLDBOLD D. L., 2000. Metal toxicity and ectomycorrhizas. Physiol. Plant. 109, 107-116.
  • KARAGIANNIDIS N.,NIKOLAU N., 2000. Influence of arbuscular mycorrhizae on heavy metal (Pb and Cd) uptake, growth, and chemical composition of Vitis vinifera L. (cv. Razaki). Am. J. Enol. Viticul. 51, 269-275.
  • KHAN A. G., 2001. The relationship between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent- polluted soil. Environ. Int. 26, 417-423.
  • KHAN A. G., KUEK C., CHAUDHRY T. M., KHOO C. S., HAYES W. J., 2000. Role of plants mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41, 197-207.
  • KINRAIDE T. B, 1998. Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol. 118, 513-520.
  • KNECHT J. A., BAREN N., TEN BOOKUM W. M.,WONG FONG SANG H. W., Koevoest P. L. M., SCHAT H., VERKLIJ J. A. C., 1995. Synthesis and degradation of phytochelatins in cadmium -tolerant Silene vulgaris. Plant Sci. 106, 9-18.
  • KÖHLK. I., LÖSCH, 1999. Experimental characterisation of heavy metal tolerance in plants. [W: ] Heavy metal stress in plants (from molecules to ecosystems). PRASAD M. N. V. PRASAD, HAGEMEYER J. (red.). Springer-Verlag, Berlin, Heidelberg, 371-389.
  • KRUPA Z., SIEDLECKA A., SKÓRZYŃSKA-POLIT E., MAKSYMIEC W., 2002. Heavy metal interactions with plant nutrients. [W:] Physiology and biochemistry of metal toxicity and tolerance in plants. PRASAD M. N. V., STRZAŁKA K. (red.). Kluwer Academic Publishers, Dordrecht, Boston, London, 287-301.
  • LEYVAL C., TURNAU K., HASELWANDTER K., 1997. Effect of heavy metal pollution on mycorrhizal colonisation and function: physiological, ecological and applied aspects. Mycorrhiza 7, 139-153.
  • LIU A., HAMEL C., HAMILTON R. I., MA B. L., SMITH D. L., 2000. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L. ) grown in soil at different P and micronutrients levels. Mycorrhiza 9, 331-336.
  • MA J. F., RYAN P. R., DELHAIZE E., 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant. Sci. 6, 273-278.
  • MICHALAK E.,WIERZBICKA M., 1998a. Differences in lead tolerance between Allium cepa plants developing from seeds and bulbs. Plant and Soil 199, 251-260.
  • MICHALAK E., WIERZBICKA M., 1998b. Gromadzenie metali ciężkichworganie spichrzowym (cebuli) u Allium cepa. [ W:] Ekofizjologiczne aspekty reakcji roślin na działanie abiotycznych czynników stresowych. GRZESIAK S., SKOCZKOWSKI A., MISZALSKI Z. (red.). PAN, Kraków, 261-266.
  • MOREL J. L., MENCH M., GUECKERT A., 1986. Measurement of Pb, Cu, and Cd binding with mucilage exudates from maize (Zea mays L.) roots. Biol. Fertil. Soils 2, 29-34.
  • NUEMANN D., ZUR NIEDEN U., LICHTENBERGER O., LEOPOLD I., 1995. How does Armeria maritima tolerate high heavy metal concentrations? J. Plant Physiol. 146, 704-717.
  • PIECHALAK A., TOMASZEWSKA B., BARALKIEWICZ D., MARLECKA A., 2002. Accumulation and detoxification of lead in legumes. Phytochemistry 60, 153-162.
  • POSCHENRIEDER CH., BARCELO J., 1999. Water relations in heavy metal stressed plants [W:] Heavy metal stress in plants (from molecules to ecosystems). PRASAD M. N. V., HAGEMEYER J. (red.). Springer-Verlag, Berlin, Heidelberg, 207-229.
  • PRASAD M. N. V.,HAGEMEYER J. (red.). 1999. Preface. [W:] Heavy metal stress in plants (from molecules to ecosystems). Springer-Verlag, Berlin, Heidelberg, 1.
  • RENGEL Z., 1992. Role of calcium in aluminium toxicity. New Phytol. 121, 499 -513.
  • RIVETTA A., NEGRINI N., COCUCCI M., 1997. Involvement of Ca +2 calmodulin in Cd +2 toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ. 20, 600-608.
  • SCHAT H., VOOIJS R., 1997. Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a cosegregation analysis. New Phytol. 136, 489-496.
  • SCHÜTZENDÜBEL A., POLLE A., 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351-1365.
  • SEREGIN I. V., PEKNOW V. M., IVANOV V. B., 2002. Plasmolysis as a tool to reveal lead localization in the apoplast of root cells. Russ. J. Plant Physiol. 49, 283-285.
  • SEREGIN I. V, IVANOV V. B., 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J Plant Physiol. 48, 523-544.
  • SIEDLECKA A., 1995. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc. Bot. Pol. 64, 365-272.
  • SIEDLECKA A., TUKENDORF A., SKÓRZYŃSKA-POLIT E., MAKSYMIEC W., WÓJCIK M., BASZYŃSKI T., KRUPA Z., 2001. Angiosperms . [W:] Metals in the environment. Analysis by biodiversity. PRASAD M. N. V. (red.). Marcel Dekker, Inc. New York, Hyderabad, India, 171-217.
  • SHIRAISHI N.,WAALKES M. P., 1994. Enhancement of metallothionein gene expression in male Wistar (WF/NCr) rats by treatment with calmodulin inhibitors: potential role of calcium regulatory pathways in metallothionein induction. Toxicol. Appl. Pharmacol. 125, 97-103.
  • TURNAU K., JURKIEWICZ A., GRZYBOWSKA B., 2002. Rola mikoryzy w bioremediacji terenów zanieczyszczonych. Kosmos 51, 185-194.
  • URQUHART C., 1971. Genetics of lead tolerance in Festuca ovina. Heredity 26, 19-33.
  • UTRIAINEN M.A., KÄRENLAMPI S. O., SCHAT H., 1997. Differential tolerance to copper and zinc of micropropagated birches tested in hydroponics. New Phytol. 137, 543-549.
  • VAN HOOF N. A. L. M., HASSINEN V., HAKVOORT H., BALLINTIJN K., SCHAT H., VERKLEIJ J., ERNST W., KARENLAMPI S., TERVAHAUTA A., 2001. Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol. 126, 1519-1526.
  • VAN STEVENNIK R. M. F., VAN STEVENNICK M. E., FERNANDO D. R., 1990. Zinc tolerance and the binding of zinc as zinc phytate in Lemna minor, X-ray microanalytical evidence. J Plant Physiol. 137, 140-146.
  • VÖGELLI-LANGE R.,WAGNER G. J., 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92, 1086-1093.
  • WENZEL W., JOCKWER F., 1999. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ. Pollut. 104,145-155.
  • WIERZBICKA M., 1987. Lead accumulation and its translocation barriers in roots of Allium cepa L.- autoradiographic and ultrastructural studies. Plant. Cell Environ. 10, 17-26.
  • WIERZBICKA M., 1998. Lead in apoplast of Allium cepa L. root tips - ultrastructural studies. Plant Sci. 133, 105-119.
  • WIERZBICKA M., 1999. Comparison of lead tolerance in Allium cepa with other plant species. Environ. Pollut. 104, 41-52.
  • WIERZBICKA M., 2001. Skażenie talem w południowej Polsce.[W:]Obieg pierwiastków w przyrodzie. Monografia. Tom I. GWOREK B. MOCKA A. (red.). Instytut Ochrony Środowiska, Warszawa, 123-129.
  • WIERZBICKA M., 2002. Przystosowania roślin do wzrostu na hałdach cynkowo-ołowianych okolic Olkusza. Kosmos 51, 139-150.
  • WIERZBICKA M., BARANOWSKA A., 1996. Under low relative air humidity Allium cepa L. plants are stronger contaminated with lead. Biol. Bull. Poznań 33, 66-67.
  • WIERZBICKA M., OBIDZIŃSKA J., 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Sci. 137, 155-174.
  • WIERZBICKA M., PANUFNIK D., 1998. The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environ. Pollut. 101, 415-426.
  • WIERZBICKA M., POTOCKA A., 2002.Tolerance to lead of plants growing on dry or moist soils. Acta Biol. Crac. Ser. Bot., 44, 21-28.
  • WIERZBICKA M., ZYSKA A., 1999. Zinc tolerance of Silene vulgaris populations from a calamine waste heap near Olkusz , Poland. [W:] Trace elements - effects on organisms and environment. Uniwersytet Śląski, Katowice, 215-219.
  • WILLIAMS L. E., PITTMAN J. K, HALL J. K., 2000. Emerging mechanisms for heavy metal transport in plants. Biochem. Biophys. Acta 1465, 104-126.
  • WOŹNY A. (red.), 1995. Ołów w komórkach roślinnych - pobieranie, reakcje, odporność. Wydawnictwo Sorus, Poznań.
  • WÓJCIK M., 2000. Fitoremediacja - sposób oczyszczania środowiska. Kosmos 49, 135-147.
  • WU L., ANTONOVICS J., 1976. Experimental ecological genetics in Plantago II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from roadside. Ecology 57, 205-208.
  • ZAŁĘCKA R., WIERZBICKA M., 2002. The adaptation of Dianthus carthusianorum L. (Caryophyllaceae) to growth on a zinc-lead heap in Southern Poland. Plant Soil 246, 249-257.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.