Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 52 | 2-3 | 271-282

Article title

Biologia termiczna pszczół - zdumiewająca przemiana od zmiennocieplności do stałocieplności

Content

Title variants

EN
Thermal biology of the honey bee: amazing transformation from poikilothermy to homeothermy

Languages of publication

PL EN

Abstracts

EN
Summary Animals show various strategies of thermal regulation. Lower vertebrates and invertebrates are classified as poikilotherms. Some insects, however, are endothermic (they can maintain a high body temperature by internal heat production) when they are active. In contrast, at rest they become ectothermic and their body temperature changes parallel to ambient temperature. Such a strategy, similar to that used by small mammals and birds, is referred to as heterothermy. Most insects can use a variety of behavioural responses to escape from both cold and hot microenvironments, so they are able to prevent excessive changes in body temperature. Both physiological and behavioural mechanisms are extremely well developed in honey bees. In the cold, an isolated bee is able to warm up its thoracic flight muscles by simultaneous contractions of the antagonistic muscles. Because the thorax is covered by furry scales the generated heat is retained in the body. In the heat, an active bee needs to dissipate excessive amount of heat generated by flight. This is achieved through evaporative cooling and increased heat convection, resulting from circulation of blood between the thorax and the abdomen. Because bees live in colonies consisting of thousands individuals, behavioural thermoregulatory responses of a single bee serve not only its own body temperature, but that of the entire colony as well. Such a social behaviour results in a permanent thermal stabilization of the colony. In the colony the majority of bees are no longer heterothermic individuals since, from the thermal biology viewpoint, the group as a whole behaves like a mammal or a bird. Even small groups of bees (10-20 individuals), placed in a thermal gradient system, behave like a mammal. Both a mammal and a group of bees for night sleep choose a slightly warmer environment than for their diurnal activity. To reduce surface heat transfer at night bees cluster together and amammal curls up. Such behavioural responses of the honeybee swarm are obviously superior to those available to a single mammal. Therefore, the swarm can be regarded as a homeothermic superorganism.

Keywords

Journal

Year

Volume

52

Issue

2-3

Pages

271-282

Physical description

Dates

published
2003

Contributors

  • Uniwersytet Mikołaja Kopernika w Toruniu, Instytut Biologii Ogólnej i Molekularnej, Zakład Fizjologii Zwierząt, Gagarina 9, 87-100 Toruń, Polska
  • Uniwersytet Mikołaja Kopernika w Toruniu, Instytut Biologii Ogólnej i Molekularnej, Zakład Fizjologii Zwierząt, Gagarina 9, 87-100 Toruń, Polska

References

  • BARTHOLOMEW G. A., CASEY T. M., 1978. Oxygen consumption of moths during rest, pre-flight warm-up, and flight in relation to body size and wing morphology. J. Exp. Biol. 76, 11-25.
  • BARTHOLOMEW G. A., 1981. A matter of size: An examination of endothermy in insects and terrestrial vertebrates. [W:] Insect thermoregulation. HEINRICH B. (red.). A Wiley-Interscience Publication, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 79-114.
  • BEENAKKERS A. M. Th., VAN DER HORST D. J., VAN MARREVIJK W. J. A., 1984. Insect flight muscle metabolism. Insect Biochem. 14, 243-260.
  • BLIGH J., 1998. Mammalian homeothermy: an integrative thesis. J. Therm. Biol. 23, 143-258.
  • CAPUTA M., 1993. Dlaczego skóra twarzy zdradza nasze emocje? Termoregulacja mózgu. Kosmos 42, 247-163.
  • CASEY T. M., 1981. Behavioral mechanisms of thermoregulation. [W:] Insect thermoregulation.
  • HEINRICH B. (red.). A Wiley-Interscience Publication, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 79-114.
  • CLENCH H. K., 1966. Behavioral thermoregulation in butterflies. Ecology 47, 1021-1034.
  • DYER F. C., SEELEY T. D., 1987. Interspecific comparisons of endothermy in honey-bees (Apis): deviations from the expected size-related patterns. J. Exp. Biol. 127, 1-26.
  • GORDON C. J., 1990. Thermal biology of the laboratory rat. Physiol. Behav. 47, 943-991.
  • GRYGOŃ B., NARĘBSKI J., 1982. Termoregulacyjne mechanizmy fizjologiczne owadów. Przegląd Zoologiczny XXVI, 359-375.
  • HEINRICH B., 1974. Thermoregulation in endothermic insects. Science 185, 747-756.
  • HEINRICH B., 1976. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. J. Exp. Biol. 64, 561-585.
  • HEINRICH B., 1977. The physiology of exercise in the bumblebee. American Scientist 65, 455-465.
  • HEINRICH B., 1979. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. Exp. Biol. 80, 217-229.
  • HEINRICH B., 1981a. Definitions and thermoregulatory taxonomy. [W:] Insect thermoregulation. HEINRICH B. (red.). A Wiley-Interscience Publication, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 3-6.
  • HEINRICH B., 1981b. The regulation of temperature in the honeybee swarm. Scientific American 244, 146-160.
  • HEINRICH B., 1981c. Energetics of honeybee swarm thermoregulation. Science 212, 565-566.
  • HEINRICH B., 1993. The hot-blooded insects. Hot-headed honeybees. Harvard University Press, Cambridge, 292-322.
  • HEINRICH B., 1996. How the honey bee regulates its body temperature. Bee World 77, 130-137.
  • HEINRICH B., BARTHOLOMEW G. A., 1972. Temperature control in flying moths. Scientific American 226, 71-78.
  • HOCKING B., 1953. The intrinsic range and speed of flight in insects. Trans. Roy. Ent. Soc. Lond. 104, 223-245.
  • JANISZEWSKI J., 1985. Termoregulacja owadów. Kosmos 4, 609-622.
  • KAMMER A. E., 1981. Physiological mechanisms of thermoregulation. [W:] Insect thermoregulation. HEINRICH B. (red.). A Wiley-Interscience Publication, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 79-114.
  • KAMMER A. E., HEINRICH B., 1978. Insect flight metabolism. [W:] Advances in insect physiology, vol. B. TREHERNE J. E., BERRIDGE M. J., WIGGLESWORTH V. B. (red.). Academic Press: London, New York, San Francisco, 133-228.
  • NARĘBSKI J., GRYGOŃ B., 1981. Termoregulacja i endotermia u owadów latających. Problemy 3, 13-17.
  • POCZOPKO P., 1990. Ciepło a życie. Zarys termofizjologii zwierząt. Państwowe Wydawnictwo Naukowe- Warszawa.
  • ROBERTS S. P., HARRISON J. E., 1998. Mechanisms of thermoregulation in flying bees. Amer. Zool. 38, 459-502.
  • SCHMIDT-NIELSEN K., 1997. Fizjologia zwierząt. Adaptacja do środowiska. Wydawnictwo Naukowe PWN, Warszawa.
  • SEELEY T., HEINRICH B., 1981. Regulation of temperature in the nests of social insects. [W:] Insect thermoregulation. HEINRICH B. (red.). A Wiley-Interscien- ce Publication, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 159-234.
  • SOUTHWICK E. E., 1983. The honey bee cluster as a homeothermic superorganism. Comp. Biochem. Physiol. 75A, 641-645.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv52p271kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.