Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 52 | 2-3 | 185-201

Article title

Kanały jonowe aktywowane przez cykliczne nukleotydy

Content

Title variants

EN
Cyclic nucleotide-gated ion channels

Languages of publication

PL EN

Abstracts

EN
Summary Cyclic nucleotide-gated (CNG) channels are a novel class of cation channels first identified in retinal photoreceptor cells and subsequently found also in other sensory and nonsensory cells. CNG channels form heterotetrameric complexes consisting of two or three different types of channel subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1and B3), give rise to three different channel types. Functionally,CNGchannels belong to the class of ligand-gated channels, which are activated by binding of ligand (cGMP) to a domain in the carboxyl terminal region, but structurally they are similar to voltage-dependent K+ channels. All channel subunits include six transmembrane segments (S1 to S6), a voltage-sensor motif (S4), a pore region (P) and a cGMP-binding domain. These channels are nonselective cation channels that do not discriminate well between monovalent and divalent ions and even pass divalent cations, in particular Ca2+. Activity of CNG channel is modulated by Ca2+/ calmodulin and by phosphorylation. Other factors may also be involved in channel regulation.

Keywords

Journal

Year

Volume

52

Issue

2-3

Pages

185-201

Physical description

Dates

published
2003

Contributors

  • Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska

References

  • AHMAD I., REDMOND L. J., BARNSTABLE C. J., 1990. Developmental and tissue-specific expression of the rod photoreceptor cGMP-gated ion channel gene. Biochem. Biophys. Res. Commun. 173, 463-470.
  • AKOPIAN A., WITKOVSKY P., 1996. D2 dopamine receptor- mediated inhibition of a hyperpolarization- activated current in rod photoreceptors. J. Neurophysiol. 76, 1828-1835.
  • BARNES S., HILLE B., 1989. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J. Gen. Physiol. 94, 719-743.
  • BAUMANN A., FRINGS S.,GODDE M., SEIFERT R., KAUPP U. B., 1994. Primary structure and functional expression of a Drosophila cyclic nucleotide-gated channel present in eyes and antennae. EMBO J. 13, 5040-5050.
  • BIEL M., ALTENHOFEN W., HULLIN R., LUDWIG J., FREICHEL M., FLOCKERZI V., DASCAL N., KAUPP U. B., HOFMANN F., 1993. Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. FEBS Lett. 329, 134-138.
  • BIEL M., ZONG X., DISTLER M., BOSSE E., KLUGBAURE N., MURAKAMI M., FLOCKERZI V., HOFMANN F., 1994. Another member of the cyclic nucleotide-gated channel family, expressed in testis, kidney, and heart. Proc. Natl. Acad. Sci. USA 91, 3505-3509.
  • BIEL M., ZONG X., HOFMANN F., 1995. Molecular diversity of cyclic nucleotide-gated cation channels. Naunyn Schmiedebergs Arch. Pharmacol. 353, 1-10.
  • BÖNIGK W., ALTENHOFEN W., MÜLLER F., DOSE A., ILLING M., MOLDAY R. S., KAUPP U. B., 1993. Rod and cone photoreceptor cell express distinct genes for cGMP- gated channels. Neuron 10, 865-877.
  • BÖNIGK W., BRADLEY J., MÜLLER F., SESTI F., BOEKHOFF I., RONNETT G. U., KAUPP U. B., FRINGS S., 1999. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J. Neurosci. 19, 5332-5347.
  • BROILLET M. -C., 2000. A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO. J. Biol. Chem. 275, 15135-15141.
  • BROILLET M. -C., FIRESTEIN S., 1996. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron 16, 377-385.
  • CHA A., SNYDER G. E., SELVIN P. R., BEZANILLA F., 1999. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809-813.
  • CHEN F. H., UKHANOVA M., THOMAS D., AFSHAR G., TANADA S., BATTELLE B. -A., PAYNE R., 1999. Molecular cloning of a putative cyclic nucleotide-gated ion channel cDNA from Limulus polyphemus. J. Neurochem. 72, 461-471.
  • CHEN T. -Y., YAU K. -W., 1994. Direct modulation by Ca 2+ -calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368, 545-548.
  • CHEN T. -Y., ILLING M., MOLDAY L. L., HSU Y. -T., YAU K. -W., MOLDAY R. S., 1994. Subunit 2 (or α) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca 2+ -calmodulin modulation. Proc. Natl. Acad. Sci. USA 91, 11757-11761.
  • CHEN T.-Y., PENG Y.-W., DHALLAN R. S., AHAMED B., REED R. R., YAU K.-W., 1993. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362, 764-767.
  • COBBS W. H., BARKDOLL A. E. 3rd, PUGH E. N. jr., 1985. Cyclic GMP increases photocurrent and light sensitivity of retinal cones. Nature 317, 64-66.
  • COHEN A. I., BLAZYNSKI C., 1988. Light-induced losses and dark recovery rates of guanosine 3´, 5´ -cyclic monophospahate in rod outer segment of intact amphibian photoreceptors. J. Gen. Physiol. 92, 731-746.
  • COOK N. J., ZEILINGER C., KOCH K. -W., KAUPP U. B., 1986. Solubilization and functional reconstitution of the cGMP-dependent cation channel from bovine rod outer segment. J. Biol. Chem. 261, 17033-17039.
  • COOK N. J., HANKE W., KAUPP U. B., 1987. Identification, purification and functional reconstitution of the cyclic GMP-dependent channel from rod photoreceptors. Proc. Natl. Acad. Sci. USA 84, 585-589.
  • COOK N. J.,MOLDAY L. L., REID D., KAUPP U. B.,MOLDAY R. S., 1989. The cGMP-gated channel of bovine rod photoreceptors is localized exclusively in the plasma membrane. J. Biol. Chem. 264, 6996-6999.
  • CRARY J. I., DEAN D. M., NGUITRAGOOL W., KURSHAN P. T., ZIMMERMAN A. L., 2000. Mechanism of inhibition of cyclic nucleotide-gated channels by diacylglycerol. J. Gen. Physiol., 116, 755-768.
  • DIFRANCESCO D., TORTORA P., 1991. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351, 145-147.
  • DOYLE D. A., CABRAL J. M., PFUETZNER R. A., KUO A., GULBIS J. M., COHEN S. L., CHAIT B. T., MACKINNON R., 1998. The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280, 69-77.
  • EISMANN E., BÖNIGK W., KAUPP U. B., 1993. Structure features of cyclic nucleotide-gated channels. Cell Physiol. Biochem. 3, 332-351.
  • EISMANN E., MÜLLER F., HEINAMANN S. H., KAUPP U. B., 1994. A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca 2+ blockage and ionic selectivity. Proc. Natl. Acad. Sci. USA 91, 1109-1113.
  • FINN J. T., GRUNWALD M. E., YAU K. -W., 1996. Cyclic nucleotide- gated ion channels: an extended family with diverse functions. Annu Rev. Physiol. 58, 395-426.
  • FESENKO E. E., KOLESNIKOV S. S., LYUBARSKY A. L., 1985. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310-313.
  • GAVAZZO P., PICCO C., EISMANN E., KAUPP U. B.,MENINI A., 2000. A point mutation in the pore region alters gating, Ca 2+ blockage, and permeation of olfactory cyclic nucleotide-gated channels. J. Gen. Physiol. 116, 311-326.
  • GERSTNER A., ZONG X., HOFMANN F., BIEL M., 2000. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J. Neurosci. 20, 1324-1332.
  • GLAUNER K. S., MANNUZZU L. M., GANDHI C. S., ISACOFF E. Y., 1999. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Na-ture 402, 813-817.
  • GORDON S. E., ZAGOTTA W. N., 1995a. A histidine residue associated with the gate of the cyclic nucleotide- activated channels in rod photoreceptors. Neuron 14, 177-183.
  • GORDON S. E., ZAGOTTA W. N., 1995b. Localization of region affecting an allosteric transition in cyclic nucleotide-activated channel. Neuron 14, 857-864.
  • GORDON S. E., BRAUTIGAN D. L., ZIMMERMAN A. L., 1992. Protein phosphatases modulate the apparent agonist affinity of the light-regulated ion channel in retinal rods. Neuron 9, 739-748.
  • GORDON S. E., DOWNING-PARK J., ZIMMERMAN A. L., 1995a. Modulation of the cGMP-gated ion channel in frog rods by calmodulin and an endogenous inhibitory factor. J. Physiol. London 486, 533-546.
  • GORDON S. E.,DOWNING-PARK J., TAM B., ZIMMERMAN A. L., 1995b. Diacylglycerol analogs inhibit the rod cGMP-gated channel by a phosphorylation-independent mechanism. Biophys. J. 69, 409-417.
  • GOTOW T.,NISHI T., 1991. Roles of cyclicGMPand inositol triphosphate in phototransduction of the molluscan extraocular photoreceptor. Brain Research 557, 121-128.
  • GOTOW T., NISHI T., KIJIMA H., 1994. Single K + channels closed by light and opened by cyclic GMP in molluscan extra-ocular photoreceptor cells. Brain Research 557, 268-272.
  • GOULDING E. H., NGAI J., KRAMER R. H., COLICOS S., AXEL R., SIEGELBAUM S. A., CHESS A., 1992. Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons. Neuron 8, 45-58.
  • GOULDING E. H., TIBBS G. R., LIU D., SIEGELBAUM S. A., 1993. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide- gated channels. Nature 364, 61-64.
  • HAYNES L. W., YAU K. -W., 1985. Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature 317, 61-64.
  • HSU Y. T.,MOLDAY R. S., 1993. Modulation of the cGMPgated channel of rod photoreceptor cells by calmodulin. Nature 361, 76-79.
  • HSU Y. T., MOLDAY R. S., 1994. Interaction of calmodulin with the cyclic GMP-gated channel of rod photoreceptor cells. Modulation of activity, affinity purification, and localization. J. Biol. Chem. 269, 29765-29770.
  • HUPPERTZ B., 1995. Evidence for a cGMP gated cation channel in photoreceptor cell membranes of Sepia officinals. FEBS Lett. 364, 198-192.
  • ILDEFONSE M., BENNETT N., 1991. Single-channel study of the cGMP-dependent conductance of retinal rods from incorporation of native vesicles into planar lipid bilayers. J. Membr. Biol. 123, 133-147.
  • JAN L.Y., JAN Y. N., 1990. A superfamily of ion channels. Nature 345, 672. JIANG Y., LEE A., CHEN J., RUTA V., CADENE M., CHAIT B. T., MACKINNON R., 2003a. X-ray structure of a voltage- dependent K + channel. Nature 423, 33-41.
  • JIANG Y., RUTA V., CHEN J., LEE A., MACKINNON R., 2003b. The principle of gating charge movement in a voltage- dependent K + channel. Nature 423, 42-48.
  • KARPEN J. W., BROWN R. L., STRYER L., BAYLOR D. A., 1993. Interaction between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods. J. Gen. Physiol. 101, 1-25.
  • KAUPP U. B., 1991. The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci. 14, 150-157.
  • KAUPP U. B., 1995. Family of cyclic nucleotide gated ion channels. Curr. Opin. Neurobiol. 5, 434-442.
  • KAUPP U. B., 1997. Cyclic nucleotide-gated channels - a short overview. Nova Acta Leopoldina 302, 57-64.
  • KAUPP U. B., ALTENHOFEN W., 1992. Cyclic nucleotide- gated channels of vertebrate photoreceptor cells and olfactory epithelium. [W:] Sensory Transduction. COREY D. P., ROPER S. D. (red.). The Rockeffeler University Press NJ, 133-150.
  • KAUPP U. B., SEIFERT R., 2002. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769-824.
  • KAUPP U. B., NIIDOME T., TANABE T., TERADA S., BONIGK W., STUHMER W., COOK N. J., KANGAWA K., MATSUO H., HIROSE T., MIYATA T., NUMA S., 1989. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762-766.
  • KILBRIDE P., 1980. Calcium effect on frog retinal cyclic guanosine 3´,5´-monophosphate levels and their light-initiated rate of decay. J. Gen. Physiol. 75, 457-426.
  • KOCH K. -W., 1992. Biochemical mechanism of light adaptation in vertebrate photoreceptors. Trends Biochem. Sci. 17, 307-311.
  • KOPROWSKI P., WALERCZYK M., FABCZAK H., KUBALSKI A., 1997. Modified patch-clamp method for studying ion channels in Stentor coeruleus. Acta Protozool. 36, 121-124.
  • KÖRSCHEN H. G., ILLING M., SEIFERT R., SESTI F., WILLIAMS A., GOTZES S., COLVILLE C.,MÜLLER F., DOSE A., GODDE M., MOLDAY L., KAUPP U. B., MOLDAY R. S., 1995. A 240kDa protein represents complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron 15, 627-636.
  • KÖRSCHEN H. G., BEYERMANN M., MÜLLER F., HECK M., VANTLER M., KOCH K. -W., KELLNER R., WOLFRUM U., BODE C., HOFMANN K. P., KAUPP U. B., 1999. Interaction of glutamic-acid-rich proteins with the cGMP signaling pathway in rod photoreceptors. Nature 400, 761-766.
  • KRAMER R. H., SIGELBAUM S. A., 1992. Intracellular Ca 2+ regulates the sensitivity of cyclic nucleotide-gated channels in olfactory receptor neurons. Neuron 9, 897-906.
  • KRAMER R. H.,MOLOKANOVA E., 2001. Modulation of cyclic- nucleotide-gated channels and regulation of vertebrate phototransduction. J. Exp. Biol. 204, 2921-2931.
  • KUSAKA S., DABIN I., BARNSTABLE C. J., PURO D. G., 1996. cGMP-mediated effects on the physiology of bovine and human retinal Müller (glial) cells. J. Physiol. 497, 813-824.
  • LENG Q., MERCIER R. W., YAO W., BERKOWITZ G. A., 1999. Cloning and first characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol. 121, 753-761.
  • LICOLN T. M., CORNWELL T. L., 1993. Intracellular cyclic GMP receptor proteins. FASEB J. 7, 328-338.
  • LIU M., CHEN T. -Y., AHAMED B., LI J., YAU K. -W., 1994. Calcium-calmodulin modulation of olfactory cyclic nucleotide-gated channel. Science 266, 1348-1354.
  • MARUNAKA Y., OHARA A., MATSUMOTO P., EATON D. C., 1991. Cyclic GMP-activated channel acivity in renal epithelial cell (A6). Biochim. Biophys. Acta 1070, 152-156.
  • MACKINNON R., 1995. Pore loops: an emerging them in ion channel structure. Neuron 14, 889-892.
  • MENINI A., 1990. Currents carried by monovalent cations through cyclic cGMP-activated channels in excised patches from salamander rods. J. Physiol. 424, 167-185.
  • MENINI A., 1999. Calcium signaling and regulation in olfactory neurons. Neurobiology 9, 419-426.
  • MIYAZU M., TANIMURA T., SOKABE M., 2000. Molecular cloning and characterization of a putative cyclic nucleotide-gated channel from Drosophila melanogaster. Insect Mol. Biol. 9, 283-292.
  • MOLDAY R. S., 1996. Calmodulin regulation of cyclic- nucleotide-gated channels. Curr. Opin. Neurobiol.
  • 6, 445-452.
  • MOLDAY R. S., 1998. Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 39, 2491-2513.
  • MOLDAY R. S., HSU Y. -T., 1995. The cGMP-gated channel of photoreceptor cells: Its structural properties and role in phototransduction. Behav. Brain Sci. 18, 441-451.
  • MOLDAY R. S., MOLDAY L. L., DOSE A., CLARK-LEWIS I., ILLING M., COOK N. J., EISMANN E., KAUPP U. B., 1991. The cGMP-gated channel of the rod photoreceptor cell characterization and orientation of the amino terminus. J. Biol. Chem. 266, 21917-21922.
  • MOLDAY R. S., REID D. M., CONNELL G., MOLDAY L. L., 1992. Molecular properties of the cGMP-gated channel of rod photoreceptor cells as probed with monoclonal antibodies [W:] Signal transduction in photoreceptor cells. Springeer-Verlag..
  • MOLOKANOVA E., TRIVEDI B., SAVCHENKO A., KRAMER R. H., 1997. Modulation of rod photoreceptor cyclic nucleotide- gated channels by tyrosine phosphorylation. J. Neurosci. 17, 9068-9076.
  • MOLOKANOVA E., MADDOX F., LUETJE C. W., KRAMER R. H., 1999a. Activity-dependent modulation of rod photoreceptor cyclic nucleotide-gated channels mediated by phosphorylation of a specific tyrosine residue. J. Neurosci. 19, 4786-4795.
  • MOLOKANOVA E., SAVCHENKO A., KRAMER R. H., 1999b. Noncatalytic inhibition of cyclic-nucleotide-gated channels by tyrosine kinase induced by genistein. J. Gen. Physiol. 113, 45-56.
  • MORI Y., FRIEDRICH T., KIM M. -S., MIKAMI A., NAKAI J., RUTH P., BOSSE E., HOFMAN F., FLOCKERZI V., FURUICHI T., MIKOSHIBA K., IMOTO K., TANABE T., NUMA S., 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398-402.
  • MÜLLER F., BÖNIGK, W., SESTI, F., FRINGS S., 1998. Phosphorylation of mammalian olfactory cyclic nucleotide- gated channels increases ligand sensitivity. J. Neurosci. 18, 164-173.
  • NAKAMURA T., GOLD G. H., 1987. A cyclic nucleotide-gated conductance in olfactory receptor cilia.Nature 325, 442-444.
  • NUMA S., 1989. Amolecular views of neurotransmitter receptors and ionic channels. The Harvey Lectures, 83, 121-165.
  • PALCZEWSKI K., POLANS A. S., BAEHR W., AMES J. B., 2000. Ca 2+ -binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioassays, 22, 337-350.
  • PETERS K. R., PALADE G. E., SCHNEIDER B. G., PAPERMASTER D. S., 1983. Fine structure of a periciliary ridge complex of frog retinal rod cells reveled by ultrahigh resolution scanning electron microscopy. J. Cell. Biol. 96, 265-276.
  • PICAUD S., LARSSON H. P.,WELLIS D. P., LECAR H.,WERBLIN F., 1995. Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc. Natl. Acad. Sci. USA 92, 9417-9421.
  • PICONES A., KORENBROT J. I., 1992. Permeation and interaction of monovalent cations with the cGMP-gated channel of cone photoreceptors. J. Gen. Physiol. 100, 647-673.
  • PRASAD B. C., REED R. R., 1999. Chemosensation: molecular mechanism in worms and mammals. Trends Genet. 15, 150-153.
  • PUGH E. N. jr., LAMB T. D., 1993. Amplification and kinetics of the activation steps in phototransduction. Biochim. Biophys. Acta 1411, 111-149.
  • RANGANATHAN R., 1994. Evolutionary origins of ion channels. Proc. Natl. Acad. Sci. USA 91, 3484- 3486.
  • RASMUSSEN H., GOODMAN D. B., 1977. Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev. 57, 421-509.
  • RAYER B,. NAYNERT M., STIEVE H., 1990. Phototransduction: different mechanisms in vertebrates and invertebrates. J. Photochem. Photobiol. B. 7, 107-148.
  • REBRIK T. I.,KORENBROT J. L., 1998. In intact cone photoreceptors, a Ca 2+ -dependent, diffusible factor modulates the cGMP-gated ion channels differently than in rods. J. Gen. Physiol. 112, 537-548.
  • RICHARDS M. J., GORDON S. E., 2000. Cooperativity and cooperation in cyclic nucleotide-gated ion channels. Biochemistry 39, 14003-14011.
  • ROOF D. J., HEUSER J. E., 1982. Surfaces of rod photoreceptor disk membranes: integral membrane components. J. Cell Biol. 95, 487-500.
  • ROOT M. J., MACKINNON R., 1993. Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron 11, 459-466.
  • RUIZ M. L., KARPEN J. W., 1997. Single cyclic nucleotide- gated channels locked in different ligand-bound states. Nature 389, 389-392.
  • SAVCHENKO A., KRAFT T. W., MOLOKANOVA E., KRAMER R. H., 2001. Growth factor regulate phototransduction by modulating cyclic nucleotide gated channels. Proc. Natl. Acad. Sci. USA 98, 5880-5885.
  • SEIFERT R., EISMANN E., LUDWIG J., BAUMANN A., KAUPP U. B., 1999. Molecular determinants of a Ca 2+ -binding site in the pore of cyclic nucleotide-gated channels: S5/S6 segments control affinity of intrapore glutamates. EMBO J. 18, 119-130.
  • STELLA S. L., THORENSON W. B., 2000. Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cyclic AMP. Eur. J. Neurosci. 12, 3537-3548.
  • STRYER L., 1999. Biochemia. Wydawnictwo Naukowe PWN, Warszawa, 353-354.
  • TORRE V.,MENNINI A., 1994. Selectivity and single-channel properties of the cGMP-activated channel in amphibian retinal rods. Academic Press Inc. USA 345-358.
  • TRIVEDI B., KRAMER R. H., 1998. Real-time patch-cram detection of intracellular cGMP reveals long-term suppression of responses NO and muscarinic agonists. Neuron 21, 895-906.
  • VARNUM M. D., ZAGOTTA W. N., 1997. Interdomain interactions undelying activation of cyclic nucleotide- gated channels. Science 278, 110-113.
  • WALDBILLING R. J., PFEFFER B. A., SCHOEN T. J., ADLER A. A., SHEN-ORR Z., SCAVO L., LEROITH D., CHADER G. J., 1991. Evidence for an insulin-like growth factor autocrine-paracrine system in the retinal photoreceptor- pigment ephitelial cell complex. J. Neurochem. 57, 1522-1533.
  • WALERCZYK M., FABCZAK H., FABCZAK S., 2000. Reakcja fotofobowa u orzęska Stentor coeruleus - badania elektrofizjologiczne. Post. Hig. Med. Dośw. 54, 329-339.
  • WEITZ D., ZOCHE M., MÜLLER F., BEYERMANN M., KÖRSCHEN H. G., KAUPP U. B., KOCH K. -W., 1998. Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the α-subunit. EMBO J. 17, 2273-2284.
  • WILSON R., AINSCOUGH R., ANDERSON K., BAYNES C., BERKS M., BONFIELD J., BURTON J., CONNELL M., COPSEY T., COOPER J., 1994. 2,2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32-38.
  • WISSINGER B., MÜLLER F., WEYAND I., SCHUFFENHAUER S., THANOS S., KAUPP U. B., ZRENNER E., 1997. Cloning, chromosomal localization and functional expression of the gene encoding the β-subunit of the cGMP-gated channel in human cone photoreceptors. Eur. J. Neurosci. 9, 2512-2521.
  • WOHLFART P., HAASE W., MOLDAY R. S., COOK N. J., 1992. Antibodies against synthetic peptides used to determine the topology and site of glycosylation of the cGMP-gated channel from bovine rod photoreceptors. J. Biol. Chem. 267, 644-648.
  • WOMACK K. B., GORDON S. E., HE F., WENSEL T. G., LU C. C.,HILGEMANN D. W., 2000. Do phosphatidylinositides modulate vertebrate phototransduction? J. Neurosci. 8, 2792-2799.
  • YANG J., ELLINOR P. T., SAYHER W. A., ZHANG J. -F., TSIEN R.
  • W., 1993. Molecular determinants of Ca 2+ selectivity and ion permeation in L-type Ca 2+ channels. Nature 366, 158-161.
  • YAU K. -W., BAYLOR D. A., 1989. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12, 289-327.
  • YU W. P., GRUNWALD M. E., YAU K. -W., 1996. Molecular cloning, functional expression and chromosomal localization of a human homolog of the cyclic nucleotide-gated ion channel of retinal cone photoreceptor.
  • FEBS Lett. 393, 211-215.
  • ZHENG J., TRUDEAU M. C., ZAGOTTA W. N., 2002. Rod cyclic nucleotide-gated channels have a stoichiometry of tree CNGA1 subunits and one CNGB1 subunit. Neuron 36, 891-896.
  • ZUFALL F., FIRESTEIN S., SHEPHERD G. M., 1994. Cyclic nucleotide- gated ion channels and sensory transduction in olfactory receptor neurons. Annu. Rev. Biphys. Biomol. Struct. 23, 577-607.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv52p185kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.