Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 52 | 2-3 | 157-171

Article title

Mechanizmy oporności komórek nowotworowych na apoptozę

Content

Title variants

EN
The mechanism of resistance to apoptosis in tumor cells

Languages of publication

PL EN

Abstracts

EN
Summary A most normal cell can die by apoptosis but tumor cells very often have some defects in the apoptotic pathway, leading not only to the increase of tumor mass but also to tumor resistance to chemotherapy. Since chemotherapy and irradiation act primarily by inducing apoptosis, defects in the apoptotic pathway make the therapy less efficient. Generally, there are two pathways of apoptosis. One - mediated by the cell surface death receptors - the extrinsic pathway, the other mediated by the mitochondria - intrinsic pathway. The common element in those two ways is activation of caspase 3. However, in some cases we can observe cell death without activation of this enzyme. One of the often occurring mechanism of resistance to apoptosis is overexpression of the Bcl-2 family antyapoptotic proteins like Bcl-2 and Bcl-XL, or lower expression of proapoptotic proteins like Bax, Bid, Bad. Another mechanism observed in tumor cells is overexpression of apoptosis inhibitors namely IAPs and FLIP. They play an important role in degradation or inactivation of executor caspases and protect cells from apoptosis. A key element in stress-induced apoptosis is p53 protein which can induce the expression of proteins involved in the mitochondrial apoptotic pathway. Mutations in p53 are common in many tumors and affect their ability to undergo cell death. In many tumor cells also the survival signal is stronger than usually and induction of apoptosis is more difficult. One of survival pathways is connected with the PI3K/Akt signalling pathway. Also cells with high expression of Hsp70 protein are protected from apoptosis, especially that leading through mitochondria. Cells with MDR (multidrug resistance) phenotype, expressing proteins from the ABC superfamily on cell surface, are able to exclude many of the drugs (including anticancer drugs) from cytoplasm. There are some evidences that cell possessing membrane transporters are resistant to that form of apoptosis connected with activation of caspase 3. The knowledge of the molecular mechanisms of tumor resistance to apoptosis can improve cancer therapy through resensitization of tumor cells.

Keywords

Journal

Year

Volume

52

Issue

2-3

Pages

157-171

Physical description

Dates

published
2003

Contributors

  • Instytut Biologii Doświadczalnej im. M. Nenckiego, Pasteura 3, 02-093 Warszawa, Polska

References

  • ADAMS J. M., CORY S., 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
  • ADAMS J. M., CORY S., 2001. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26, 61-66.
  • ANTONSSON B., MONTESSIUT S., LAUPER S., ESKES R., MATRINOU J. C., 2000. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345, 271-278.
  • ATTARDI L. D., JACKS T., 1999. The role of p53 in tumour suppression: lessons from mouse models. Cell. Mol. Life Sci. 55, 48-63.
  • BARTKE T., SIEGMUND D., PETERS N., REICHWEIN M., HEINKLER F., SCHEURICH P., WAJANT H., 2001. p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase- 8-independent cell death in DLD-1 cells. Oncogene 20, 571-580.
  • BEERE H. M., GREEN D.R., 2001. Stress management - heat shock protein-70 and the regulation of apoptosis. Trends Cell. Biol. 11, 6-10.
  • BELMOKHTAR C. A., HILLION J., SEGAL-BENDIRDJIAN E., 2001. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20, 3354-3362.
  • BIDERE N., SENIK A., 2001. Caspase-independent apoptotic pathways in T lymphocytes: a minireview. Apoptosis 6, 371-375.
  • BIELAK-ŻMIJEWSKA A., KORONKIEWICZ M., SKIERSKI J., PIWOCKA K., RADZISZEWSKA E., SIKORA E., 2000. Effect of curcumin on the apoptosis of rodent and human nonproliferating and proliferating lymphoid cells. Nutr. Cancer 38, 131-138.
  • CANDE C., COHEN I., DAUGAS E., RAVAGNAN L., LAROCHETTE N., ZAMZAMI N., KROEMER G., 2002. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84, 215-222.
  • CARDONE M. H., ROY N., STENNICKE H. R., SALVESEN G. S., FRANKE T. F., STANBRIDGE E., FRISCH S. i współaut., 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318-1321.
  • CHU Z. L.,MCKINSEY T. A., LIU L., GENTRY J.J.,MALIM M. H., BALLARD D. W., 1997. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc. Natl. Acad. Sci. U S A 94, 10057-10062.
  • COHEN G M., 1997. Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16.
  • DEGENHARDT K., SUNDARARAJAN R., LINDSTEN T., THOMPSON C., WHITE E., 2002. Bax and Bak independently promote cytochrome C release frommitochondria. J. Biol. Chem. 277, 14127-14134.
  • DEISS L. P., GALINKA H., BERISSI H., COHEN O., KIMCHI A., 1996. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 15, 3861- 3870.
  • DESAGHER S., OSEN-SAND A., NICHOLS A., ESKES R., MONTESSIUT S., LAUPER S., MAUNDREL K., i współaut., 1999. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell. Biol. 144, 891-901.
  • DEVERAUX Q. L. , REED J. C., 1999. IAP family proteins- suppressors of apoptosis. Genes Dev. 13, 239-252.
  • DEVERAUX Q. L., STENNICKE H. R., SALVESEN G. S., REED J. C., 1999. Endogenous inhibitors of caspases. J. Clin. Immunol. 19, 388-398.
  • DEVERAUX Q. L., TAKAHASHI R., SALVESEN G. S., REED J. C., 1997. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300-304.
  • DI CRISTOFANO A., PANDOLFI P. P., 2000. Themultiple roles of PTEN in tumor suppression. Cell 100, 387-390.
  • DUMONT C., DURRBACH A., BIDERE N., ROULEAU M., KROEMER G., BERNARD G., HIRSCH F. i współaut., 2000. Caspase-independent commitment phase to apoptosis in activated blood T lymphocytes: reversibility at low apoptotic insult. Blood 96, 1030-1038.
  • ENARI M., TALANIAN R. V.,WONG W. W., NAGATA S., 1996. Sequential activation of ICE-like and CPP32-like proteases during Fas- mediated apoptosis. Nature 380, 723-726.
  • FONG W. G., LISTON P., RAJCAN-SEPAROVIC E., ST JEAN M., CRAIG C., KORNELUK R. G., 2000. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 70, 113-122.
  • FULDA S., MEYER E., DEBATIN K. M., 2002. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21, 2283-2294.
  • FULDA S., MEYER E., FRIESEN C., SUSIN S. A., KROEMER G., DEBATIN K. M., 2001. Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 20, 1063-1075.
  • GEYER R. K., YU Z. K., MAKI C. G., 2000. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat. Cell. Biol. 2, 569-573.
  • GOTTLIEB T. M., OREN M., 1998. p53 and apoptosis. Semin. Cancer Biol. 8, 359-368.
  • GREEN D. R., REED J.C., 1998. Mitochondria and apoptosis. Science 281, 1309-1312.
  • GRZELAKOWSKA-SZTABERT B., 1998. Molecular mechanisms of apoptosis induced by activation of membrane receptors from the TNF-R superfamily. Postepy Biochem. 44, 8-21.
  • GRZELAKOWSKA-SZTABERT B., 1999. Participation of viral and cellular IAP proteins in regulation of apoptosis and cell survival. Postepy Biochem. 45, 167-176.
  • HANAHAN D., WEINBERG R. A., 2000. The hallmarks of cancer. Cell 100, 57-70.
  • HERR I., DEBATIN D. K. M., 2001. Cellular stress response and apoptosis in cancer therapy. Blood 98, 2603-2614.
  • HICKMAN J. A., 1996. Apoptosis and chemotherapy resistance. Eur. J. Cancer 32A, 921-926.
  • HOFFMAN W. H., BIADE S., ZILFOU J. T., CHEN J., MURPHY M., 2002. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247-3257.
  • HUANG D. C., STRASSER A., 2000. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839-842.
  • HUANG Y., IBRADO A. M., REED J. C., BULLOCK G., RAY S., TANG C., BHALLA K., 1997. Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells. Leukemia 11, 253-257.
  • IGNEY F. H.,KRAMMER P. H., 2002. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277-288.
  • IRMLER M., THOME M., HAHNE M., SCHNEIDER P., HOFMANN K., STEINER V., BODMER J. L. i współaut., 1997. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190-195.
  • JACOBS J. J., KEBLUSEK P., ROBANUS-MAANDAG E., KRISTEL P., LINGBEEK M., NEDERLOF P. M., VAN WELSEM T. i współaut., 2000. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291-299.
  • JOHNSTONE R. W., CRETNEY E., SMYTH M. J., 1999. P-glycoprotein protects leukemia cells against caspase- dependent, but not caspase-independent, cell death. Blood 93, 1075-1085.
  • JOHNSTONE R. W., RUEFLI A. A., LOWE S. W., 2002. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153-164.
  • JOHNSTONE R. W., RUEFLI A. A., TAINTON K. M., SMYTH M. J., 2000. A role for P-glycoprotein in regulating cell death. Leuk. Lymphoma 38, 1-11.
  • JOZA N., SUSIN S. A., DAUGAS E., STANFORD W. L., CHO S. K., LI C. Y., SASAKI T. i współaut., 2001. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554.
  • KENNEDY S. G., KANDEL E. S., CROSS T. K., HAY N., 1999. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell. Biol. 19, 5800-5810.
  • KIM M. S., KANG H. J.,MOON A., 2001. Inhibition of invasion and induction of apoptosis by curcumin in H-ras- transformed MCF10A human breast epithelial cells. Arch. Pharm. Res. 24, 349-354.
  • KIM T. H., ZHAO Y., BARBER M. J., KUHARSKY D. K., YIN X. M., 2000. Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem. 275, 39474-39481.
  • KISCHKEL F. C., LAWRENCE D. A., TINEL A., LEBLANC H., VIRMANI A., SCHOW P., GAZDAR A. i współaut., 2001. Death receptor recruitment of endogenous caspase- 10 and apoptosis initiation in the absence of caspase- 8. J. Biol. Chem. 276, 46639-46646.
  • KITANAKA C.,KATO K., IJIRI R., SAKURADA K., TOMIYAMA A., NOGUCHI K., NAGASHIMA Y. i współaut., 2002. Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. J. Natl. Cancer Inst. 94, 358-368.
  • KLUCK R. M., BOSSY-WETZEL E., GREEN D. R.,NEWMEYER D. D., 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136.
  • KONDO S., SHINOMURA Y., MIYAZAKI Y., KIYOHARA T., TSUTSUI S., KITAMURA S., NAGASAWA Y. i współaut., 2000. Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res. 60, 4328-4330.
  • KRAMMER P. H., 1999. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv. Immunol. 71, 163-210.
  • KRUEGER A., BAUMANN S., KRAMMER P. H., KIRCHHOFF S., 2001. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol. Cell. Biol. 21, 8247-8354.
  • KUWANA T., SMITH J. J., MUZIO M., DIXIT V., NEWMEYER D. D., KORNBLUTH S., 1998. Apoptosis induction by caspase- 8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273, 16589-16594.
  • LEE S. H., SHIN M. S.,KIM H. S., LEE H. K., PARK W. S.,KIM S. Y., LEE J. H. i współaut., 1999. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res. 59, 5683-5686.
  • LI L. Y., LUO X., WANG X., 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99.
  • LIU R., PAGE C., BEIDLER D. R., WICHA M. S., NUNEZ G., 1999. Overexpression of Bcl-x(L) promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. Am. J. Pathol. 155, 1861-1867.
  • LIU Z., SUN C.,OLEJNICZAK E. T.,MEADOWS R. P., BETZ S. F., OOST T., HERRMANN J. i współaut., 2000. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408, 1004-1008.
  • LOWE S. W., LIN A. W., 2000. Apoptosis in cancer. Carcinogenesis 21, 485-495.
  • LUO X., BUDIHARDJO I., ZOU H., SLAUGHTER C., WANG X., 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.
  • MAESTRO R., DEI TOS A. P., HAMAMORI Y., KRASNOKUTSKY S., SARTORELLI V., KEDES L., DOGLIONI C. i współaut., 1999. Twist is a potential oncogene that inhibits apoptosis. Genes. Dev. 13, 2207-2217.
  • MARZO I., BRENNER C., ZAMZAMI N., JURGENSMEIER J. M., SUSIN S. A., VIEIRA H., PREVOST M. C. i współaut., 1998. Bax and adenine nucleotide translocator cooperate in themitochondrial control of apoptosis. Science 281, 2027-2031.
  • MEDEMA J. P., SCAFFIDI C., KISCHKEL F. C., SHEVCZENKO A., MANN M., KRAMMER P. H., PETER M. E., 1997. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794-2804.
  • MEIJERINK J. P., MENSINK E. J., WANG K., SEDLAK T. W., SLOETJES A. W., DE WITTE T., WAKSMAN G., i współaut., 1998. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91, 2991-2997
  • MINN A. J., VELEZ P., SCHENDEL S. L., LIANG H., MUCHMORE S. W., FESIK S. W., FILL M., i współaut., 1997. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385, 353-357.
  • MIYASHITA T., REED J. C., 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299.
  • MOLL U. M., ZAIKA A., 2001. Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett. 493, 65-69.
  • MORONI M. C., HICKMAN E. S., DENCHI E. L., CAPRARA G., COLLI E., CECCONI F., MULLER H. i współaut., 2001. Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell. Biol. 3, 552-558.
  • MULLER M.,WILDER S., BANNASCH D., ISRAELI D., LEHLBACH K., LI-WEBER M., FRIEDMAN S. L. i współaut., 1998. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033-2045.
  • MURPHY K. L., KITTRELL F. S., GAY J. P., JAGER R., MEDINA D., ROSEN J.M., 1999. Bcl-2 expression delays mammary tumor development in dimethylbenz(a)anthracene- treated transgenic mice. Oncogene 18, 6597-6604.
  • NAGATA S., 2000. Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12-18.
  • NAKANO K., VOUSDEN K. H., 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 7, 683-694.
  • NICHOLSON D. W., ALI A., THORNBERRY N. A., VAILLANCOURT J. P., DING C. K., GALLANT M., GAREAU Y. i współaut., 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37-43.
  • NICHOLSON D. W., THORNBERRY N. A., 1997. Caspases: killer proteases. Trends Biochem. Sci. 22, 299-306.
  • NOTARBARTOLO M., CERVELLO M., DUSONCHET L., CUSIMANO A., D´ALESSANDRO N., 2002. Resistance to diverse apoptotic triggers in multidrug resistant HL60 cells and its possible relationship to the expression of P- glycoprotein, Fas and of the novel anti-apoptosis factors IAP (inhibitory of apoptosis proteins). Cancer Lett. 180, 91-101.
  • ODA E., OHKI R., MURASAWA H., NEMOTO J., SHIBUE T., YAMASHITA T., TOKINO T. i współaut., 2000. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058.
  • O´GORMAN D. M., COTTER T. G., 2001. Molecular signals in anti-apoptotic survival pathways. Leukemia 1, 21-34
  • PATEL T., GORES G., J. KAUFMAN S. H., 1996. The role of proteases during apoptosis. Faseb J. 10, 587-597.
  • RAVAGNAN L., GURBUXANI S., SUSIN S. A., MAISSE C., DAUGAS E., ZAMZAMI N., MAK T. i współaut., 2001. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 3, 839-843.
  • REED J. C., 1998. Bcl-2 family proteins. Oncogene 17, 3225-3236.
  • REED J. C., 1999. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941-2953.
  • ROSSE T., OLIVIER R., MONNEY L., RAGER M., CONUS S., FELLAY I.., JANSEN B., i współaut., 1998. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496-499.
  • ROY N., DEVERAUX Q. L., TAKAHASHI R., SALVESEN G. S., REED J. C., 1997. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. Embo J. 16, 6914-6925.
  • ROYMANS D., SLEGERS H., 2001. Phosphatidylinositol 3-kinases in tumor progression. Eur. J. Biochem. 268, 487-498.
  • RUFFOLO S. C., BRECKENRIDGE D. G.,NGUYEN M.,GOPING I. S., GROSS A., KORSMEYER S. J., LI H. i współaut., 2000. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ. 7, 1101-1108.
  • RUTH A. C., RONINSON I. B., 2000. Effects of the multidrug transporter P-glycoprotein on cellular responses to ionizing radiation. Cancer Res. 60, 2576-2578.
  • RYAN K. M., PHILLIPS A. C., VOUSDEN K. H., 2001. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell. Biol. 13, 332-337.
  • SAKAHIRA H., ENARI M., NAGATA S., 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99.
  • SAKAHIRA H., ENARI M., OHSAWA Y., UCHIYAMA Y., NAGATA S., 1999. Apoptotic nuclear morphological change without DNA fragmentation. Curr. Biol. 9, 543-546.
  • SAMALI A., COTTER T. G., 1996. Heat shock proteins increase resistance to apoptosis. Exp. Cell Res. 223, 163-170.
  • SCAFFIDI C., FULDA S., SRINIVASAN A., FRIESEN C., LI F., TOMASELLI K. J., DEBATIN K. M. i współaut., 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-1687.
  • SCHENDEL S. L., XIE Z., MONTAL M. O., MATSUYAMA S., MONTAL M., REED J. C., 1997. Channel formation by antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci. USA 94, 5113-5118.
  • SCHMITZ I., KIRCHHOFF S., KRAMMER P. H., 2000. Regulation of death receptor-mediated apoptosis pathways. Int. J. Biochem. Cell. Biol. 32, 1123-1136.
  • SCHULZE-OSTHOFF K. , WALCZAK H., DROGE W., KRAMMER P. H., 1994. Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127, 15-20.
  • SHAYESTEH L., LU Y., KUO W. L., BALDOCCHI R., GODFREY T., COLLINS C., PINKEL D. i współaut., 1999. PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99-102.
  • SHERR C. J., WEBER J. D., 2000. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94-99.
  • SHIMIZU S., KONISHI A., KODAMA T., TSUJIMOTO Y., 2000. BH4 domain of antiapoptotic Bcl-2 family members closes voltage- dependent anion channel and inhibits apoptoticmitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97, 3100-3105.
  • SHIMIZU S., NARITA M., TSUJIMOTO Y., 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487.
  • SHIMIZU S., TSUJIMOTO Y., 2000. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. USA 97, 577-582.
  • SHIN M. S., KIM H. S., LEE S. H., PARK W. S., KIM S. Y., PARK J. Y., LEE J. H. i współaut., 2001. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res. 61, 4942-4946.
  • SILKE J., HAWKINS C. J., EKERT P. G., CHEW J., DAY C. L., PAKUSCH M., VERHAGEN A. M. i współaut., 2002. The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J. Cell Biol. 157, 115-124.
  • SLEE E. A., HARTE M. T., KLUCK R. M.,WOLF B. B., CASIANO C. A., NEWMEYER D. D., WANG H. G. i współaut., 1999. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9- dependent manner. J. Cell Biol. 144, 281-292.
  • SMYTH M. J., KRASOVSKIS E., SUTTON V. R., JOHNSTONE R. W., 1998. The drug efflux protein, P-glycoprotein, additionally protects drug- resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc. Natl. Acad. Sci. USA 95, 7024-7029.
  • SOENGAS M. S., CAPODIECI P., POLSKY D.,MORA J., ESTELLER M., OPITZ-ARAYA X., MCCOMBIE R. i współaut., 2001. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207-211.
  • STAMBOLIC V., MACPHERSON D., SAS D., LIN Y., SNOW B., JANG Y., BENCHIMOL S. i współaut., 2001. Regulation of PTEN transcription by p53. Mol. Cell. 8, 317-325.
  • STENNICKE H. R., JURGENSMEIER J. M., SHIN H., DEVERAUX Q.,WOLF B. B., YANG X., ZHOU Q. i współaut., 1998. Pro-caspase-3 is a major physiologic target of caspase- 8. J. Biol. Chem. 273, 27084-27090.
  • STRAND S., HOFMANN W. J., HUG H., MULLER M., OTTO G., STRAND D., MARIANI S. M. i współaut., 1996. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells-a mechanism of immune evasion? Nat. Med. 2, 1361-1366.
  • SUN X.M. , MACFARLANE M., ZHUANG J.,WOLF B. B., GREEN D. R., COHEN G. M. 1999. Distinct caspase cascades are initiated in receptor-mediated and chemical- induced apoptosis. J. Biol. Chem. 274, 5053-5060.
  • SUZUKI Y., NAKABAYASHI Y., TAKAHASHI R. 2001. Ubiquitin- protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl. Acad. Sci. USA 98, 8662-8667.
  • TAKITA J., YANG H. W., BESSHO F., HANADA R., YAMAMOTO K., KIDD V., TEITZ T. i współaut., 2000. Absent or reduced expression of the caspase 8 gene occurs frequently in neuroblastoma, but not commonly in Ewing sarcoma or rhabdomyosarcoma. Med. Pediatr. Oncol. 35, 541-543.
  • TAMM I., KORNBLAU S. M., SEGALL H., KRAJEWSKI S.,WELSH K., KITADA S., SCUDIERO D. A. i współaut., 2000. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796-1803.
  • TEITZ T., WEI T., VALENTINE M. B., VANIN E. F., GRENET J., VALENTINE V. A., BEHM F. G. i współaut., 2000. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med. 6, 529-535.
  • THEVENOD F., FRIEDMANN J. M., KATSEN A. D., HAUSER I. A. 2000. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor- kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J. Biol. Chem. 275, 1887-1896.
  • TSUJIMOTO Y., SHIMIZU S., 2000. VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ. 7, 1174-1181.
  • VAN LOO G., SCHOTTE P., VAN GURP M., DEMOL H., HOORELBEKE B., GEVAERT K., RODRIGUEZ I. i współaut., 2001. Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ. 8, 1136-1142.
  • VAN LOO G., VAN GURP M., DEPUYDT B., SRINIVASULA S. M., RODRIGUEZ I., ALNEMRI E. S., GEVAERT K. i współaut., 2002. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 9, 20-26.
  • VERHAGEN A. M., SILKE J., EKERT P. G., PAKUSCH M., KAUFMAN H., CONNOLLY L. M., DAY C. L. i współaut., 2002. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize in- hibitor of apoptosis proteins. J. Biol. Chem. 277, 445-454.
  • VOUSDEN K. H., 2000. p53: death star. Cell 103, 691-694.
  • VOUSDEN K. H., WOUDE G. F., 2000. The ins and outs of p53. Nat. Cell. Biol. 2, 178-180.
  • WANG C. Y.,MAYO M. W.,KORNELUK R. G.,GOEDDEL D. V., BALDWIN A. S. JR. 1998. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress caspase-8 activation. Science 281, 1680-1683.
  • WANG X., 2001. The expanding role of mitochondria in apoptosis. Genes. Dev. 15, 2922-2933.
  • WEI M. C., ZONG W. X., CHENG E. H., LINDSTEN T., PANOUTSAKOPOULOU V., ROSS A.J., ROTH K. A. i współaut., 2001. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517): 727-30.
  • WIDŁAK P., 2000. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim. Polon. 47, 1037-1044.
  • WOLF B. B., GOLDSTEIN J. C., STENNICKE H. R., BEERE H., AMARANTE-MENDES G. P., SALVESEN G. S., GREEN D. R., 1999. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94, 1683-1692.
  • WU G., CHAI J., SUBER T. L.,WU J.W., DU C.,WANG X., SHI Y., 2000. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008-1012.
  • WYLLIE A. H., KERR J. F., CURRIE A. R. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306.
  • YIN X.M.,WANG K., GROSS A., ZHAO Y., ZINKEL S., KLOCKE B., ROTH K. A. i współaut., 1999. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886-891.
  • ZACCHI P., GOSTISSA M., UCHIDA T., SALVAGNO C., AVOLIO F., VOLINIA S., RONAI Z. i współaut., 2002. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853-857.
  • ZHENG H., YOU H., ZHOU X. Z., MURRAY S. A., UCHIDA T., WULF G., GU L. i współaut., 2002. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849-853.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv52p157kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.