Preferences help
enabled [disable] Abstract
Number of results
2002 | 51 | 2 | 185-194
Article title

Rola mikoryzy w bioremediacji terenów zanieczyszczonych

Title variants
The role of mycorrhiza in bioremediation of polluted sites
Languages of publication
Summary Industry, ineffective mining technologies, overuse of chemicals in agriculture result among others in increasing pollution of soil, air and water. In consequence many bare areas are created, exposed to wind erosion and contaminating ground waters. The introduction of plants on such sites is of utmost importance for stabilization of the soil. Plants can be used not only in phytostabilisation, but also in phytodegradation (degradation of soil pollutants by plants) and phytoextraction (extraction of e.g. soil metals by plants). The degraded sites often highly polluted, are usually devoid of beneficial soil microorganisms the plants naturally rely on. Most plants are symbiotic with soil fungi, forming ecto- and endomycorrhizal associations. Those natural allies could be used to enhance plant survival on difficult sites. Mycorrhizal fungi not only provide the plants with water and mineral compounds and help to improve the structure of soil, but were also shown to act as filters, blocking toxic compounds within their mycelium. Moreover, they influence the physiology of their host plants making them less vulnerable to pathogens, soil pollution, salinity, drought and a number of other environmental stress factors. By using specific fungal strains isolated from polluted sites, showing improved tolerance to toxic compounds, the success of new techniques, such as phytostabilisation, phytodegradation and phytoextraction, could be optimised.
Physical description
  • Instytut Botaniki Uniwersytet Jagielloński, Lubicz 46, 31-512 Kraków, Polska
  • Instytut Botaniki Uniwersytet Jagielloński, Lubicz 46, 31-512 Kraków, Polska
  • Instytut Botaniki Uniwersytet Jagielloński, Lubicz 46, 31-512 Kraków, Polska
  • ADRIANO D. C., CHLOPECKA A., KAPLAN D. I., 1998. Role of Soil Chemistry in Soil Remediation and Ecosystem Conservation. Soil Chemistry and Ecosystem Health. Special Publication 52: Soil Science Society of America, Madison, USA.
  • ANTOSIEWICZ D. M., 1992. Adaptation of plants to an environment polluted with heavy metals. Acta Soc. Bot. Pol. 61, 281-299.
  • AZCÓN-AGUILAR C., BAREA J. M., 1996. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6, 457-464.
  • BAKER A. J. M., BROOKS R. R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery 1, 81-126.
  • BAKER A. J. M., REEVES R. D., HAJAR A. S. M., 1994. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae). New Phytol. 127, 61-68.
  • BAKKER M. I., VORENHOUT M., SIJM D. T. H. M., KOLLOFEL C., 1999. Dry deposition of atmospheric polycyclic hydrocarbons in three Plantago species. Env. Toxic. Chem. 18, 2289-2294.
  • BARR D. P., AUST S. D., 1994. Mechanisms white rot fungi use to degrade pollutants. Environm. Sci. Technol. 28, 79-87.
  • BAREA J. M., 1997. Mycorrhiza/bacteria interactions on plant growth promotion. [W:] Plant growth-promoting rhizobacteria, present status and future prospects. OGOSHI A., KOBAYASHI L., HOMMA Y., KODAMA F., KONDON N., AKINO S. (red.). OECD, Paris, 150-158.
  • BAREA J. M., 2000. Rhizosphere and mycorrhiza of field crops. [W:] Biological resource management: connecting science and policy. TOUTANT J. P., BALAZS E., GALANTE E., LYNCH J. M., SCHEPERS J. S., WERNER D., WERRY P. A. (red.). (OECD) INRA, Editions and Springer, 110-125.
  • BARONI F., BOSCAGLI A., PROTANO G., RICCOBONO F., 2000. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Env. Poll. 109, 347-352.
  • BEZALEL L., HADAR Y., CERNIGLIA C. E., 1997. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl. Env. Microbiol. 63, 2495-2501.
  • BLAUDEZ D., JACOB C., TURNAU K., COLPAERT J. V., AHONEN-JONNARTH U., FINLAY R., BOTTON B., CHALOT M . , 2000. Differencial responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol. Res. 104, 1366-1371.
  • BLAYLOCK M. J., ZAKHAROVA O., SALT D. E., RASKIN I., 1995. Increasing heavy metal uptake through soil amendments. The key to effective phytoremediation. [W:] Agronomy abstracts. ASA, Madison, WI, 218.
  • BLOOMFIELD C., 1981. The translocation of metals in soils. [W:] The chemistry of soil processes. GREENLAND D. J., HAYES M. H. B. (red.). John Wiley & Sons Ltd, Chichester.
  • BROCKWELL J., BOTTOMLEY P. J., THIES J. E., 1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174, 143-180.
  • BROOKS R. R., 1997. Plant hyperaccumulators of metals and their role in mineral exploration, archaeology, and land reclamation. [W:] Remediation of metal-contaminated soils. ISKANDAR I. K., ADRIANO D. C. (red.). Science Reviews, Northwood, England, 123-133.
  • CHŁOPECKA A., ADRIANO D. C., 1996. Mimicked in situ stabilization of metals in a cropped soil. Environm. Sci. Technol. 30, 3294-3303.
  • COLPAERT J. V., VANDENKOORNHUYSE P., ADRIANSEN K., VANGRONSVELD J., 2000. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol. 147, 367-379.
  • DONNELLY P. K., FLETCHER J. S., 1994. Potential use of mycorrhizal fungi as bioremediation agents. [W:] Bioremediation through rhizosphere technology. ANDERSON T. A., COATS J. R. (red.). American Chemical Society, Washington DC, 93-99.
  • ERNST W. H. O., 1996. Bioavailability of heavy metals and decontamination of soils by plants. Appl. Geochem. 11, 163-167.
  • FEIN J. B., DAUGHNEY C. J., YEE N., DAVIS T. A., 1997. A chemical equilibrium model for metal absorption onto bacterial surfaces. Geochem. Cosmochim. Acta 61, 3319-3328.
  • GALLI U., MEIER M., BRUNOLD C., 1993. Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings (Picea abies (L.) Karst.) and its ectomycorrhizal fungus Laccaria laccata (Scop. ex Fr.) Bk. and Br.: Sulphate reduction, thiols and distribution of the heavy metals. New Phytol. 125, 837-843.
  • GALLI U., SCHÜEPP H., BRUNOLD C., 1994. Heavy metal binding by mycorrhizal fungi. Physiol. Pl. 92, 364-368.
  • GILBERT E. S., CROWLEY D. E., 1997. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Env. Microbiol. 63, 1933-1938.
  • GREEN N. A., MEHARG A. A., TILL C., TROKE J., NICHOLSON J. K., 1999. Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by 19C radiolabelling analysis. Appl. Env. Microbiol. 65, 4021-4027.
  • GUCWA-PRZEPIÓRA E., TURNAU K., 2001. Arbuscular mycorrhiza and plant succession in the zinc smelter spoil heap in Katowice-Wełnowiec. Acta Soc. Bot. Poloniae (w druku).
  • HARTLEY-WHITAKER J., CAIRNEY J. W. G., MEHARG A. A., 2000. Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218, 31-42.
  • HASELWANDTER K., 1997. Soil micro-organisms, mycorrhiza, and restoration ecology. [W:] Restoration ecology and sustainable development. URBAŃSKA K., WEBB N. R., EDWARDS P. J. (red.). Cambridge Univ. Press, Cambridge, 65-80.
  • HASELWANDTER K., BOWEN G. D., 1996. Mycorrhizal relations in trees for agroforestry and land rehabilitation. Forest Ecol. Managem. 81, 1-17.
  • HILDEBRANDT U., KALDORF M., BOTHE H., 1999. The zinc violet and its colonization by arbuscular mycorrhizal fungi. J. Pl. Physiol. 154, 709-717.
  • JACQUOT-PLUMEY E., VAN TUINEN D., CHATAGNIER O., GIANINAZZI S., GIANINAZZI-PEARSON V., 2001. 25S rDNA-based molecular monitoring of glomalean fungi in sewage sludge-treated field plots. Env. Microbiol. 3, 525-531.
  • JEFFRIES P., GIANINAZZI S., PEROTTO S., TURNAU K., BAREA J. M., 2002. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Ecol. J. Microbiol. (w druku).
  • JONER E. J., LEYVAL C., 1997. Uptake of 109Cd by roots and hyphae of Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentration of cadmium. New Phytol. 135, 353-360.
  • JONER E. J., LEYVAL C., 2001. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10, 155-159.
  • JONER E. J., BRIONES R., LEYVAL C., 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226, 227-234.
  • KHAN A.G., KUEK C., CHAUDHRY T. M., KHOO C. S., HAYES W. J., 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41, 197-207.
  • KOIDE R. T., SCHREINER R. P., 1992. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Ann. Rev. Pl. Physiol. Pl. Mol. Biol. 43, 557-581.
  • KRISHNAMURTI G. S. R., CIESLINSKI G., HUANG P. M., VAN REES K. C. J., 1997. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Env. Qual. 26, 271-277.
  • KUMAR P., DUSCHENKOV V., MOTTO H., RASKIN I., 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Env. Sci. Technol. 29, 1232-1238.
  • LEVEBRE K. K., MIKI B. L., LALIBERTE J. F., 1987. Mammalian metallothionein functions in plants. Biotechnol. 5, 1053-1056.
  • LEYVAL C., BINET P., 1998. Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. J. Env. Qual. 27, 402-407.
  • LEYVAL C., SINGH B. R., JONER E. J., 1995. Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norvegian soils influenced by heavy metals and soil properties. Water Air Soil Poll. 83, 203-216.
  • LEYVAL C., TURNAU K., HASELWANDTER K., 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7, 139-153.
  • LINDERMAN R. G., 2000. Effects of mycorrhizas on plant tolerance to diseases. [W:] Arbuscular mycorrhizas: physiology and function.
  • KAPULNIK Y., DOUDS D. D. Jr. (red.). Kluwer Academic Publishers, Dordrecht, The Netherlands, 345-365.
  • LODENIUS M., AUTIO S., 1989. Effects of acidification on the mobilization of cadmium and mercury from soils. Arch. Env. Contamin. Toxicol. 18, 261-267.
  • LOSI M. E., AMRHEIN C., FRANKENBERGER W. T., 1994. Bioremediation of chromate contaminated groundwater by reduction and precipitation in surface soils. J. Env. Qual. 23, 1141-1150.
  • LOVERA M., CUENCA G., 1996. Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6, 111-118.
  • MAITI I. B., WAGNER G. J., HUNT A. G., 1991. Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Pl. Sci. 76, 99-107.
  • MEHARG A. A., CAIRNEY J. W. G., 2000. Ectomycorrhizas extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 32, 1475-1484.
  • MILLER R. M., JASTROW J. D., 2000. Mycorrhizal fungi influence soil structure. [W:] Arbuscular mycorrhizas: physiology and function. KAPULNIK Y., DOUDS D. D. (red.). Kluwer Academic Publishers, Netherlands, 3-18.
  • MISRA S., GEDAMU L., 1989. Heavy metal tolerant Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Genet. 78, 161-168.
  • ORŁOWSKA E., ZUBEK SZ., JURKIEWICZ A., SZAREKŁUKASZEWSKA G., TURNAU K., 2002. Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12, 153-159.
  • OUSLEY M. A., LYNCH J. M., WHIPPS J. M., 1994. Potential of Trichoderma spp as consistent plant-growth stimulators. Biol. Fert. Soils 17, 85-90.
  • RAO GADDE R., LAITINEN H. A., 1974. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Analytical. Chem. 46, 2022-2026.
  • REILLEY K. A., BANKS M. K., SCHWAB A. P., 1996. Dissipation of polycyclic aromatichydrocarbons in the rhizosphere. J. Env. Qual. 25, 212-219.
  • REMY W., TAYLOR T. N., HAAS H., KERP H., 1994. Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc. Natl. Acad. Sci. USA 91, 11841-11843.
  • SALT D. E., BLAYLOCK N., KUMAR N., DUSHENKOV V., ENSLEY B. D., CHET I., RASKIN I., 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13, 468-474.
  • SALZER P., CORBERE H., BOLLER T., 1999. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208, 319-325.
  • SANCHEZ-DIAZ M., HONRUBIA M., 1994. Water relations and alleviation of drought stress in mycorrhizal plants. [W:] Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. GIANINAZZI S., SCHÜEPP H. (red.). Birkhäuser, Basel, 167-178.
  • SCHÜTZENDÜBEL A., MAJCHERCZYK A., JOHANNES C., HUTTERMANN A., 1999. Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int. Biodeterior Biodegradat. 43, 93-100.
  • SCHWAB A. P., BANKS M. K., 1994. Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. [W:] Bioremediation through rhizosphere technology. ANDERSON T. A., COATS J. R. (red.). American Chemical Society, Washington DC, 132-141.
  • SHANN J. R., BOYLE J. J., 1994. Influence of plant species on in situ rhizosphere degradation. [W:] Bioremediation through rhizosphere technology. ANDERSON T. A., COATS J. R. (red.). American Chemical Society, Washington DC, 70-81.
  • SHETTY K. G., BANKS M. K., HETRICK B. A., SCHWAB A. P., 1994. Biological characterization of a southeast Kansas mining site. Water Air Soil Poll. 78, 169-177.
  • SIMON L., BOUSQUET J., LÉVESQUE R. C., LALONDE M., 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363, 67-69.
  • SMITH S. E., READ D. J., 1997. Mycorrhizal symbiosis. Academic Press, London. TAM P. C. F., 1995. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5, 181-187.
  • TONIN C., VANDENKOORNHUYSE P., JONER E. J., STRACZEK J., LEYVAL C., 2001. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10, 161-168.
  • TURNAU K., 1998. Heavy metal uptake and arbuscular mycorrhiza development of Euphorbia cyparissias on zinc wastes in South Poland. Acta Soc. Bot. Poloniae 67, 105-113.
  • TURNAU K., KOTTKE I., DEXHEIMER J., 1996. Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol. Res. 100, 16-22.
  • TURNAU K., KOTTKE I., DEXHEIMER J., BOTTON B., 1994. Element distribution in Pisolithus tinctorius mycelium treated with cadmium dust. Ann. Bot. 74, 137-142.
  • TURNAU K., PRZYBYLOWICZ W. J., MESJASZ-PRZYBYLOWICZ J., 2001a. Heavy metal distribution in Suillusluteus mycorrhizas-as revealed by micro-PIXE analysis. Nucl. Instr. Meth. Phys. Res. B 181, 649-658.
  • TURNAU K., RYSZKA P., TUINEN VAN D., GIANINAZZI-PEARSON V., 2001b. Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in Southern Poland. Mycorrhiza 10, 169-174.
  • VAN TUINEN D., JACQUOT E., ZHAO B., GALLOTTE A., GIANINAZZI-PEARSON V., 1998a. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol. Ecol. 7, 879-887.
  • VAN TUINEN D., ZHAO B., GIANINAZZI-PEARSON V., 1998b. PCR in studies of AM fungi: from primers to application. [W:] Mycorrhizal manual. VARMA A. K. (red.). Springer-Verlag, Heidelberg, 387-399.
  • WEISSENHORN I., LEYVAL C., BERTHELIN J., 1993. Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal polluted soils. Plant Soil 157, 247-256.
  • WILSON N. G., BRADLEY G., 1996. Enhanced degradation of petrol (Slovene diesel) in an aqueous system by immobilized Pseudomonas fluorescens. J. Appl. Bacteriol. 80, 99-104.
  • WÓJCIK M., 2000. Fitoremediacja - sposób oczyszczania oerodowiska. Kosmos 49, 135-147.
  • WU L., ANTONOVICS J., 1975. Experimental ecological genetics in Plantago. I. Induction of roots and shoots on leaves for large scale vegetative propagation and metal tolerance testing in P. lanceolata. New Phytol. 75, 277-282.
  • WU L., ANTONOVICS J., 1976. Experimental ecological genetics in Plantago. II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from roadside. Ecology 57, 205-208.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.