Preferences help
enabled [disable] Abstract
Number of results
2002 | 51 | 1 | 13-17
Article title

Rola tlenku azotu w ośrodkowym układzie nerwowym u owadów

Title variants
The role of nitric oxide in the central nervous system of insects
Languages of publication
Summary In nerve cells, the permeating short-lived signalling molecule of nitric oxide (NO) is generated by Ca2+ -calmodulin-stimulated NO synthase (NOS). Nitric oxide activates soluble guanylate cyclase (sGC) in target cells, leading to the formation of cyclic guanosine monophosphate (cGMP). Biochemical studies have shown the presence of Ca2+ -calmodulin-regulated NO-cGMP signalling mechanism in the nervous system of insects. Molecular characterization of a Drosophila NOS gene has shown its 43% identity with the mammalian neuronal gene of NOS. This paper provides a short review of the cellular organization of nitric oxide signalling in the insect nervous system as well as information on its function in processing of olfactory information, memory formation, and the visual system, as well as in neuronal development.
Physical description
  • Muzeum Zoologiczne Pracownia Neuroetologii Owadów, Instytut Zoologii Uniwersytet Jagielloński, Ingardena 6, 30-060 Kraków, Polska
  • BICKER G., SCHMACHTENBERG O., 1997. Cytochemical evidence for nitric oxide/cyclic GMP signal transmission in the visual system of the locust. Europ. J. Neurosci. 9, 189-193.
  • BREER H., SHEPHERD G. M., 1993. Implications of the NO/cGMP system for olfaction. Trends Neurosci. 16, 5-9.
  • CRAMER K. S., ANGELUCCI A., HAHM J. O., BOGDANOV M. B., SUR M., 1996. A role for nitricoxide in the development of the ferret retinogeniculate projection. J. Neurosci. 16, 7995-8004.
  • GIBBS S. M., TRUMAN J. W., 1998. Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron 20, 83-93.
  • HILDENRANDT H., MÜLLER U., MENZEL R., 1994. Chemosensory stimulation and nitric oxide enhances PKA activity in the antennal lobe of the honey bee. nd [W:] Proceedings of the 22 Göttingen Neurobiology Conference 1994. ELSNER N., BREER H. (red.). Thieme Verlag, Stuttgart, 653.
  • JUUSOLA M., FRENCH A. S., UUSITALO R. O., WECKSTRÖMM., 1996. Information processing by graded-potential transmission through tonically active synapses. Trends Neurosci. 19, 292-297.
  • KENDRICK K. M., GUEVARA-GUZMAN R., ZORILLA J., HINTON M. R., BROAD K. D., MIMMACK M., OHKURA S., 1997. Formation of olfactory memories mediated by nitric oxide. Nature 388, 670-674.
  • KISHIMOTO J., KEVERNE E. B., HARDWICK J., EMSON P. C., 1993. Localization of nitric oxide synthase in the mouse olfactory and vomeronasal system: a histochemical, immunological and in situ hybridization study. Eur. J. Neurosci. 5, 1684-1694.
  • KOISTINAHO J., SWANSON R. A., DE VENTE J., SAGAR S. M., 1993. NADPH diaphorase (nitric oxide synthase)-reactive amacrine cells of rabbit retina: putative target cells and stimulation by light. Neuroscience 57, 587-597.
  • KURENNY D. E., MOROZ L. L., TURNER R. W., SHARKEY K. A., BARNES S., 1994. Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 13, 315-324.
  • KUZIN B., ROBERTS I., PEUNOVA N., ENIKOPOLOV G., 1996. Nitric oxide regulates cell proliferation during Drosophila development. Cell 87, 639-649.
  • LAUGHLIN S. B., 1994. Matching coding, circuits, cells and molecules to signals: general principles of retinal design in the fly's eye. Prog. Retinal Eye Res. 13, 165-196.
  • MÜLLER U., 1996. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16, 541-549.
  • MÜLLER U., BUCHNER E., 1993. Histochemical localization of NADPH-diaphorase in adult Drosophila brain: is nitric oxide a neuronal messenger also in insects? Naturwissenschaften 80, 524-526.
  • MÜLLER U., BICKER G., 1994. Calcium activated release of nitric oxide and cellular distribution of nitric oxide synthesizing neurons in the nervous system of the locust. J. Neurosci. 14, 7521-7528.
  • MÜLLER U., HILDENRANDT H., 1995. The nitric oxide/cGMP system in the antennal lobe of Apis mellifera is implicated in integrative processing of chemosensory stimuli. Europ. J. Neurosci. 7, 2240-2248.
  • REGULSKI M., TULLY T., 1995. Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. Proc. Natl. Acad. Sci. USA 92, 9072-9076.
  • SANDELL J. H., 1985. NADPH diaphorase cells in the mammalian inner retina. J. Comp. Neurol. 238, 466-472.
  • SCHMACHTENBERG O., BICKER G., 1999. Nitric oxide and cyclic GMP modulate photoreceptor cell responses in the visual system of the locust. J. Exp. Biol. 202, 13-20.
  • SCHUMAN E. M., MADISON D. V., 1994. Locally distribiuted synaptic potentiation in the hippocampus. Science 263, 532-536.
  • STENGL M., ZINTL R., 1996. NADPH diaphorase activity in the antennae of the hawkmoth Manduca sexta. J. Exp. Biol. 199, 1063-1072.
  • TRUMAN J. W., DE VENTE J., BALL E. E., 1996. Nitric oxide-sensitive guanylate cyclase activity is associated with the maturational phase of neuronal development in insects. Development 122, 3949-3958.
  • WANG T., XIE Z., LU B., 1995. Nitric oxide madiates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 374, 262-266.
  • WU H. H., WILLIAMS C. V., MCLOON S. C., 1994. Involvement of nitric oxide in the elimination of a transient retinotectal projection in development. Science 265, 1593-1596.
  • YAMAMOTO R., BREDT D. S., SNYDER S. H., STONE R. A., 1993. The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 54, 189-200.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.