EN
The energy level scheme of the Nd^{3+} and Pr^{3+} ions in ferromagnetic Nd_{2}Fe_{14}B and Pr_{2}Fe_{14}B intermetallic compounds was evaluated on the basis of all known experiments. In calculations the effect of charge (Stark effect) and spin-dependent (Zeeman effect) interactions were taken into account by means of the crystal-field and molecular-field approximation, respectively. The derived energy level scheme is associated with the removal of the degeneracy of the lowest multiplet given by Hund's rules, i.e. ^{4}I_{9/2} (Nd^{3+}) and ^{3}H_{4} (Pr^{3+}). The revealed low-energy electronic structure (<25 meV = 200 cm^{-1}) is associated with many-electron states of the RE^{3+} ions. Magnetic and electronic properties resulting from this fine structure are compared with all known experimental results. The localized crystal electric field levels exist also in Nd_{2}CuO_{4}, an ionic compound which by doping with Ce becomes high-T_{c} superconductor, indicating the formation of crystal electric field states independently on the metallic or ionic state.