Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
1995 | 88 | 6 | 1073-1080

Article title

Homoclinic Chaos in Generalized Henon-Heiles System

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper considers the generalized Henon-Heiles system, defined by the Hamiltonian Η = (p^{2}_{1} + p^{2}_{2} + Αq^{2}_{1} + Bq^{2}_{2})/2 + Cq^{2}_{1}q_{2} + Dq^{3}_{2}. Melnikov's method is used to prove the existence of nondegenerate homoclinic orbits near two integrable cases: (o) C = 0; A, B, D arbitrary; (i) A = B; C = 3D. The existence of such orbits precludes the existence of analytic second integrals.

Keywords

EN

Year

Volume

88

Issue

6

Pages

1073-1080

Physical description

Dates

published
1995-12
received
1995-06-27

Contributors

author
  • Institute of Physics, Pedagogical University, Pl. Słowiański 6, 65-069 Zielona Góra, Poland

References

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv88z602kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.