PL EN


Preferences help
enabled [disable] Abstract
Number of results
1994 | 86 | 4 | 497-512
Article title

Single-Crystal X-Ray Diffractometry Using Synchrotron Radiation

Content
Title variants
Languages of publication
EN
Abstracts
EN
The outstanding properties of synchrotron radiation, in particular its high brilliancy over a wide spectral range, its low divergence, its polarization properties, and the pulsed time structure, extend the range of single-crystal X-ray diffractometry to experiments which are not feasible with conventional sources, such as sealed X-ray tubes or rotating anode equipment. Data collection techniques are strongly influenced by the general aims of a diffraction experiment, by the sample quality, its absorption and scattering power, as well as by the reflection profile shape and the instrumental resolution function. Often, the sample properties play a crucial role, and not all samples may be suitable for data collection with synchrotron X-rays. The time-dependence of the primary beam intensity and of its polarization state requires monitoring and normalization to monitor counts, which complicates data collection and data reduction due to sources of both random and systematic errors not known from conventional X-ray sources. There is almost no utilization of X-ray diffraction that cannot profit from the use of synchrotron radiation. X-ray diffraction at a synchrotron radiation source can yield structure factors of an unprecedented quality, provided proper attention is given to sample properties, to data collection strategy and data evaluation procedures. Though little is gained for strong reflections, the improvement is very pronounced for the weaker reflections, including high-order reflections, which can be measured in much shorter time than with conventional X-ray sources. However, synchrotron radiation does not provide a solution to all problems, in some cases conventional laboratory X-ray sources may be more appropriate than synchrotron radiation. Taking into account the limited access to synchrotron radiation sources, X-ray diffraction with synchrotron radiation can only supplement, but not replace conventional X-ray sources and diffraction techniques.
Keywords
EN
Publisher

Year
Volume
86
Issue
4
Pages
497-512
Physical description
Dates
published
1994-10
Contributors
author
  • Institut für Kristallographie, Universität (TH) Karlsruhe, Kaiserstraβe 12, 76128 Karlsruhe, Germany
author
  • Institut für Kristallographie, Universität (TH) Karlsruhe, Kaiserstraβe 12, 76128 Karlsruhe, Germany
References
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv86z405kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.