ArticleOriginal scientific text

Title

ORR Electrocatalysis on Cr³⁺, Fe²⁺, Co²⁺-Doped Manganese(IV) Oxides

Authors 1, 1, 2, 1, 1,

Affiliations

  1. National University of Food Technologies
  2. Institute of General and Inorganic Chemistry of National Academy of Science of Ukraine
  3. Bogomolets National Medical University

Abstract

The ionic dopant additives have different mechanisms of their influence upon MnO₂ electrocrystallisation process and depending on dopants added the following polymorphs are stabilised: α -MnO₂ (hollandite, I4/m) - NH₄⁺; γ -MnO₂ (ramsdellite, Pbnm) - Co²⁺, Fe²⁺; layered polymorph δ -MnO₂ (birnessite, C2/m) - Cr³⁺. The defect states of intergrowth method in ramsdellite matrix and twinning, OH groups studied by X-ray diffraction and the Fourier transform infrared mtehod, respectively, indicate their high content in case of Fe²⁺ and Co²⁺-doped manganese dioxide. CVA oxygen reduction reaction peaks were established after experiments in alkaline electrolytes and dioxygen (argon, air) atmosphere. Activity of doped samples studied is comparable with other published data. Both doped with Co²⁺ and Fe²⁺ samples display maximal currents and some distinctive features in oxygen reduction reaction.

Keywords

61.66.Fn, 61.72.-y, 85.40.Ry

Bibliography

  1. J.O'M. Bockris, Z.S. Minevski, Electrochim. Acta 39, 1471 (1994), doi: 10.1016/0013-4686(94)85124-7
  2. C. Song, J. Zhang, in: PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Ed. J. Zhang, Springer, London 2008, p. 89, doi: 10.1007/978-1-84800-936-3
  3. A.F. Wells, Structural Inorganic Chemistry, Oxford University Press, Oxford 1984
  4. Handbook of Manganese Dioxide Battery Grade, Eds. D. Glover, B. Schumm, A. Kozawa, International Battery Material Association (IBA Incorporated), 1989
  5. J.E. Post, Proc. Natl. Acad. Sci. USA 96, 3447 (1999), doi: 10.1073/pnas.96.7.3447
  6. P.M. de Wollf, Acta Crystallogr. 12, 341 (1959), doi: 10.1107/S0365110X59001001
  7. G.V. Sokol'skii, S.V. Ivanov, N.D. Ivanova, E.I. Boldyrev, T.F. Lobunets, J. Water Chem. Technol. 34 227 (2012), doi: 10.3103/S1063455X1
  8. G.V. Sokolsky, S.V. Ivanov, E.I. Boldyrev, N.D. Ivanova, T.F. Lobunets, Solid State Phenom. 230, 85 (2015), doi: 10.4028/www.scientific.net/SSP.230.85
  9. G. Sokolsky, N. Ivanova, S. Ivanov, Ye. Boldyrev, in: NANOSMAT 2007, Alvor, Algarve (Portugal), 2007, Abstracts book, p. 168
  10. F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130, 9 (2008), doi: 10.1021/ja710899q
  11. G. Sokolsky, S. Ivanov, N. Ivanova, Ye. Boldyrev, M. Kakazey, Materials Today, Virtual Conference on Nanotechnology (2012 http://ll1.workcast.net/10283/1686074537916730/documents/10283_hall_33.pdf
  12. G.V. Sokolsky, S.V. Ivanov, N.D. Ivanova, Ye.I. Boldurev, O.V. Kobulinskaya, M.V. Demchenko,Acta Phys. Pol. A 117, 86 (2010), doi: 10.12693/APhysPolA.117.86
  13. E.I. Boldyrev, N.D. Ivanova, G.V. Ivanov, O.A. Stadnik, J. Solid State Electrochem. 17, 2213 (2013), doi: 10.1007/s10008-013-2082-7
  14. G. Sokolsky, N. Ivanova, S. Ivanov, Ye. Boldyrev, in: 5th Spring Annual Meeting of the ISE, Dublin (Ireland), International Society of Electrochemistry, Lausanne 2007, p. 227 http://ise-online.org/ise-conferences/annmeet/folder/07-spring-BoA.pdfd
  15. S.L. Suib, Acc. Chem. Res. 41, 479 (2008), doi: 10.1021/ar7001667
  16. S. Biswas, A.S. Poyraz, Y. Meng, C.-H. Kuo, C. Guild, H. Tripp, S.L. Suib, Appl. Catal. B Environm. Appl. Catal. B Environm. 165, 731 (2015), doi: 10.1016/j.apcatb.2014.10.055
  17. A.M. Hashem, A.M. Abdel-Latif, H.M. Abuzeid, H.M. Abbas, H. Ehrenberg, R.S. Farag, C.M. Julien, J. Alloys Comp. 509, 9669 (2011)
  18. K. Matsuki, H. Kamada, Electrochim. Acta 31, 13 (1986), doi: 10.1016/0013-4686(86)80054-8
  19. A. Sumboja, X.M. Ge, F.W.T. Goh, B. Li, D.S. Geng, T.S.A. Hor, Y. Zong, Z.L. Liu, ChemPlusChem 80, 1341 (2015), doi: 10.1002/cplu.201500183
  20. S. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee, W. Chen, J. Cho, Y. Cui, Angew. Chem.-Int. Ed. 55, 8599 (2016), doi: 10.1002/anie.201602851
  21. T. Reddy, Handbook of Batteries, McGraw-Hill, 2011
  22. K.B. Liew, W.R.W. Daud, M. Ghasemi, K.S. Loh, M. Ismail, S.S. Lim, J.X. Leong, Int. J. Hydrogen En. 40, 11625 (2015), doi: 10.1016/j.ijhydene.2015.04.030
  23. K.H. Wu, Q.C. Zeng, B.S. Zhang, X. Leng, D.S. Su, I.R. Gentle, D.W. Wang, Chemsuschem 8, 3331 (2015), doi: 10.1002/cssc.201500372
  24. P.-C. Li, C.-C. Hu, T.-H. You, P.-Y. Chen, Carbon 111, 813 (2017), doi: 10.1016/j.carbon.2016.10.057
  25. F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Angew. Chem. Int. Ed. 52, 2474 (2013), doi: 10.1002/anie.201208582
  26. A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, Angew. Chem. 120, 4597 (2008), doi: 10.1002/anie.200705648
  27. A.S. Ryabova, F.S. Napolskiy, T. Poux, S.Ya. Istomin, A. Bonnefont, D.M. Antipin, A.Y. Baranchikov, E.E. Levin, A.M. Abakumov, K. Gwénaëlle, E.V. Antipov, G.A. Tsirlina, E.R. Savinova, Electrochim. Acta 187, 161 (2016), doi: 10.1016/j.electacta.2015.11.012
  28. A.S. Ryabova, A. Bonnefont, P. Zagrebin, T. Poux, R.P. Sena, J. Hadermann, A.M. Abakumov, G. Kéranguéven, S.Y. Istomin, E.V. Antipov, G.A. Tsirlina, E.R. Savinova, CHEMELECTROCHEM 3, 1667 (2016), doi: 10.1002/celc.201600236
  29. S. Luo, D.B. Zhou, J. Electrochem. Soc. 161, A23 (2013), doi: 10.1149/2.007401jes
  30. L. Jörissen, J. Power Sourc. 155, 23 (2006), doi: 10.1016/j.jpowsour.2005.07.038
  31. M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, J. Am. Chem. Soc. 137, 3638 (2015), doi: 10.1021/jacs.5b00281
  32. Ming Xiong, D.G. Ivey, J. Electrochem. Soc. 164, A1012 (2017), doi: 10.1149/2.0481706jes
  33. N.D. Ivanova, E.I. Boldyrev, K.N. Pimenova, G.V. Sokol'skii, I.S. Makeeva, Russ. J. Appl. Chem. 71, 1269 (1998)
  34. Y. Chabre, J. Pannetier, Prog. Solid State Chem. 23, 1 (1995), doi: 10.1016/0079-6786(94)00005-2
  35. J. Brenet, J. Power Sourc. 4, 183 (1979), doi: 10.1016/0378-7753(79)85009-0
  36. P. Ruetschi, R. Giovanioli, J. Electrochem. Soc. 135, 2663 (1988), doi: 10.1149/1.2095406
  37. O. Shmychkova, T. Luk'yanenko, R. Amadelli, A. Velichenko, J. Electroanal. Chem. 774, 88 (2016), doi: 10.1016/j.jelechem.2016.05.017
  38. N.D. Sakhnenko, M.V. Ved', D.S. Androshchuk, S.A. Korniy, Surf. Eng. Appl. Electrochem. 52, 145 (2016), doi: 10.3103/S1068375516020113
  39. S. Fritsch, E.J. Post, S.L. Suib, A. Navrotsky, Chem. Mater. 10, 474 (1998), doi: 10.1021/cm970104h
  40. A. Manceau, V.A. Drits, E. Silvester, C. Bartoli, B. Lanson, Am. Mineral. 82, 11 (1997), doi: 10.2138/am-1997-11-1213
  41. M. Mohapatra, S. Anand, Int. J. Eng. Sci. Technol. 2, 127 (2010), doi: 10.4314/ijest.v2i8.63846
  42. G. Sokolsky, N. Ivanova, S. Ivanov, T. Tomila, Ye. Boldyrev, Sci. Sintering 39, 273 (2007), doi: 10.2298/SOS0703273S
  43. T. Barudžija, N. Cvjetićanin, D. Bajuk-Bogdanović, M. Mojović, M. Mitrić, J. Alloys Comp. 728, 259 (2017), doi: 10.1016/j.jallcom.2017.09.015
  44. C.M. Julien, M. Massot, C. Poinsignon, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 60, 689 (2004), doi: 10.1016/S1386-1425(03)00279-8
  45. Chung-Hao Kuo, I.M. Mosa, S. Thanneeru, V. Sharma, Lichun Zhang, S. Biswas, M. Aindow, S. Pamir Alpay, J.F. Rusling, S.L. Suib, Jie He, Chem. Commun. 51, 5951 (2015), doi: 10.1039/C5CC01152C
Pages:
1097-1102
Main language of publication
English
Published
2018-04
Exact and natural sciences