ArticleOriginal scientific text
Title
ORR Electrocatalysis on Cr³⁺, Fe²⁺, Co²⁺-Doped Manganese(IV) Oxides
Authors 1, 1, 2, 1, 1,
Affiliations
- National University of Food Technologies
- Institute of General and Inorganic Chemistry of National Academy of Science of Ukraine
- Bogomolets National Medical University
Abstract
The ionic dopant additives have different mechanisms of their influence upon MnO₂ electrocrystallisation process and depending on dopants added the following polymorphs are stabilised: α -MnO₂ (hollandite, I4/m) - NH₄⁺; γ -MnO₂ (ramsdellite, Pbnm) - Co²⁺, Fe²⁺; layered polymorph δ -MnO₂ (birnessite, C2/m) - Cr³⁺. The defect states of intergrowth method in ramsdellite matrix and twinning, OH groups studied by X-ray diffraction and the Fourier transform infrared mtehod, respectively, indicate their high content in case of Fe²⁺ and Co²⁺-doped manganese dioxide. CVA oxygen reduction reaction peaks were established after experiments in alkaline electrolytes and dioxygen (argon, air) atmosphere. Activity of doped samples studied is comparable with other published data. Both doped with Co²⁺ and Fe²⁺ samples display maximal currents and some distinctive features in oxygen reduction reaction.
Keywords
61.66.Fn, 61.72.-y, 85.40.Ry
Bibliography
- J.O'M. Bockris, Z.S. Minevski, Electrochim. Acta 39, 1471 (1994), doi: 10.1016/0013-4686(94)85124-7
- C. Song, J. Zhang, in: PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Ed. J. Zhang, Springer, London 2008, p. 89, doi: 10.1007/978-1-84800-936-3
- A.F. Wells, Structural Inorganic Chemistry, Oxford University Press, Oxford 1984
- Handbook of Manganese Dioxide Battery Grade, Eds. D. Glover, B. Schumm, A. Kozawa, International Battery Material Association (IBA Incorporated), 1989
- J.E. Post, Proc. Natl. Acad. Sci. USA 96, 3447 (1999), doi: 10.1073/pnas.96.7.3447
- P.M. de Wollf, Acta Crystallogr. 12, 341 (1959), doi: 10.1107/S0365110X59001001
- G.V. Sokol'skii, S.V. Ivanov, N.D. Ivanova, E.I. Boldyrev, T.F. Lobunets, J. Water Chem. Technol. 34 227 (2012), doi: 10.3103/S1063455X1
- G.V. Sokolsky, S.V. Ivanov, E.I. Boldyrev, N.D. Ivanova, T.F. Lobunets, Solid State Phenom. 230, 85 (2015), doi: 10.4028/www.scientific.net/SSP.230.85
- G. Sokolsky, N. Ivanova, S. Ivanov, Ye. Boldyrev, in: NANOSMAT 2007, Alvor, Algarve (Portugal), 2007, Abstracts book, p. 168
- F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130, 9 (2008), doi: 10.1021/ja710899q
- G. Sokolsky, S. Ivanov, N. Ivanova, Ye. Boldyrev, M. Kakazey, Materials Today, Virtual Conference on Nanotechnology (2012 http://ll1.workcast.net/10283/1686074537916730/documents/10283_hall_33.pdf
- G.V. Sokolsky, S.V. Ivanov, N.D. Ivanova, Ye.I. Boldurev, O.V. Kobulinskaya, M.V. Demchenko,Acta Phys. Pol. A 117, 86 (2010), doi: 10.12693/APhysPolA.117.86
- E.I. Boldyrev, N.D. Ivanova, G.V. Ivanov, O.A. Stadnik, J. Solid State Electrochem. 17, 2213 (2013), doi: 10.1007/s10008-013-2082-7
- G. Sokolsky, N. Ivanova, S. Ivanov, Ye. Boldyrev, in: 5th Spring Annual Meeting of the ISE, Dublin (Ireland), International Society of Electrochemistry, Lausanne 2007, p. 227 http://ise-online.org/ise-conferences/annmeet/folder/07-spring-BoA.pdfd
- S.L. Suib, Acc. Chem. Res. 41, 479 (2008), doi: 10.1021/ar7001667
- S. Biswas, A.S. Poyraz, Y. Meng, C.-H. Kuo, C. Guild, H. Tripp, S.L. Suib, Appl. Catal. B Environm. Appl. Catal. B Environm. 165, 731 (2015), doi: 10.1016/j.apcatb.2014.10.055
- A.M. Hashem, A.M. Abdel-Latif, H.M. Abuzeid, H.M. Abbas, H. Ehrenberg, R.S. Farag, C.M. Julien, J. Alloys Comp. 509, 9669 (2011)
- K. Matsuki, H. Kamada, Electrochim. Acta 31, 13 (1986), doi: 10.1016/0013-4686(86)80054-8
- A. Sumboja, X.M. Ge, F.W.T. Goh, B. Li, D.S. Geng, T.S.A. Hor, Y. Zong, Z.L. Liu, ChemPlusChem 80, 1341 (2015), doi: 10.1002/cplu.201500183
- S. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee, W. Chen, J. Cho, Y. Cui, Angew. Chem.-Int. Ed. 55, 8599 (2016), doi: 10.1002/anie.201602851
- T. Reddy, Handbook of Batteries, McGraw-Hill, 2011
- K.B. Liew, W.R.W. Daud, M. Ghasemi, K.S. Loh, M. Ismail, S.S. Lim, J.X. Leong, Int. J. Hydrogen En. 40, 11625 (2015), doi: 10.1016/j.ijhydene.2015.04.030
- K.H. Wu, Q.C. Zeng, B.S. Zhang, X. Leng, D.S. Su, I.R. Gentle, D.W. Wang, Chemsuschem 8, 3331 (2015), doi: 10.1002/cssc.201500372
- P.-C. Li, C.-C. Hu, T.-H. You, P.-Y. Chen, Carbon 111, 813 (2017), doi: 10.1016/j.carbon.2016.10.057
- F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Angew. Chem. Int. Ed. 52, 2474 (2013), doi: 10.1002/anie.201208582
- A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, Angew. Chem. 120, 4597 (2008), doi: 10.1002/anie.200705648
- A.S. Ryabova, F.S. Napolskiy, T. Poux, S.Ya. Istomin, A. Bonnefont, D.M. Antipin, A.Y. Baranchikov, E.E. Levin, A.M. Abakumov, K. Gwénaëlle, E.V. Antipov, G.A. Tsirlina, E.R. Savinova, Electrochim. Acta 187, 161 (2016), doi: 10.1016/j.electacta.2015.11.012
- A.S. Ryabova, A. Bonnefont, P. Zagrebin, T. Poux, R.P. Sena, J. Hadermann, A.M. Abakumov, G. Kéranguéven, S.Y. Istomin, E.V. Antipov, G.A. Tsirlina, E.R. Savinova, CHEMELECTROCHEM 3, 1667 (2016), doi: 10.1002/celc.201600236
- S. Luo, D.B. Zhou, J. Electrochem. Soc. 161, A23 (2013), doi: 10.1149/2.007401jes
- L. Jörissen, J. Power Sourc. 155, 23 (2006), doi: 10.1016/j.jpowsour.2005.07.038
- M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, J. Am. Chem. Soc. 137, 3638 (2015), doi: 10.1021/jacs.5b00281
- Ming Xiong, D.G. Ivey, J. Electrochem. Soc. 164, A1012 (2017), doi: 10.1149/2.0481706jes
- N.D. Ivanova, E.I. Boldyrev, K.N. Pimenova, G.V. Sokol'skii, I.S. Makeeva, Russ. J. Appl. Chem. 71, 1269 (1998)
- Y. Chabre, J. Pannetier, Prog. Solid State Chem. 23, 1 (1995), doi: 10.1016/0079-6786(94)00005-2
- J. Brenet, J. Power Sourc. 4, 183 (1979), doi: 10.1016/0378-7753(79)85009-0
- P. Ruetschi, R. Giovanioli, J. Electrochem. Soc. 135, 2663 (1988), doi: 10.1149/1.2095406
- O. Shmychkova, T. Luk'yanenko, R. Amadelli, A. Velichenko, J. Electroanal. Chem. 774, 88 (2016), doi: 10.1016/j.jelechem.2016.05.017
- N.D. Sakhnenko, M.V. Ved', D.S. Androshchuk, S.A. Korniy, Surf. Eng. Appl. Electrochem. 52, 145 (2016), doi: 10.3103/S1068375516020113
- S. Fritsch, E.J. Post, S.L. Suib, A. Navrotsky, Chem. Mater. 10, 474 (1998), doi: 10.1021/cm970104h
- A. Manceau, V.A. Drits, E. Silvester, C. Bartoli, B. Lanson, Am. Mineral. 82, 11 (1997), doi: 10.2138/am-1997-11-1213
- M. Mohapatra, S. Anand, Int. J. Eng. Sci. Technol. 2, 127 (2010), doi: 10.4314/ijest.v2i8.63846
- G. Sokolsky, N. Ivanova, S. Ivanov, T. Tomila, Ye. Boldyrev, Sci. Sintering 39, 273 (2007), doi: 10.2298/SOS0703273S
- T. Barudžija, N. Cvjetićanin, D. Bajuk-Bogdanović, M. Mojović, M. Mitrić, J. Alloys Comp. 728, 259 (2017), doi: 10.1016/j.jallcom.2017.09.015
- C.M. Julien, M. Massot, C. Poinsignon, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 60, 689 (2004), doi: 10.1016/S1386-1425(03)00279-8
- Chung-Hao Kuo, I.M. Mosa, S. Thanneeru, V. Sharma, Lichun Zhang, S. Biswas, M. Aindow, S. Pamir Alpay, J.F. Rusling, S.L. Suib, Jie He, Chem. Commun. 51, 5951 (2015), doi: 10.1039/C5CC01152C