Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 1069-1073

Article title

Electrical, Electromechanical and Piezoelectric Properties of Ca₃TaGa₃Si₂O₁₄ Resonators at Elevated Temperatures

Content

Title variants

Languages of publication

EN

Abstracts

EN
The electrical conductivity, resonance frequency and piezoelectric strain constants are determined for ordered piezoelectric Ca₃TaGa₃Si₂O₁₄ (CTGS) single crystals from room temperature to 900°C. The latter result from three independent methods, namely resonant, ultrasonic pulse-echo, and laser Doppler vibrometry techniques, which allows validating the results. Further, the long-term behaviour of fundamental materials properties including electrical conductivity and resonance frequency are examined at 1000°C for CTGS crystals, grown by different manufacturers. After an initial period of about 500 h, the conductivity is found to remain nearly constant for at least 1500 h. In a period of 2000-5000 h a decrease of conductivity by only 20% is observed. The resonance frequency is found to decrease almost linearly in a period of 500-5000 h for all investigated samples.

Keywords

Contributors

author
  • Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19B, 38640, Goslar, Germany
author
  • Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19B, 38640, Goslar, Germany
author
  • SAWLab Saxony, Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, 01069, Dresden, Germany
author
  • SAWLab Saxony, Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, 01069, Dresden, Germany
author
  • Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19B, 38640, Goslar, Germany

References

  • [1] J. Haines, O. Cambon, D. Keen, M. Tucker, M. Dove, Appl. Phys. Lett. 81, 2968 (2002) , doi: 10.1063/1.1515363
  • [2] R.W. Cernosek, J.R. Bigbie, M.T. Anderson, J.H. Small, P.S. Sawyer, Solid-State Sensor and Actuator Workshop, Hilton, Head Island (SC) 1998
  • [3] D.P. Birnie III, J. Mater. Sci. 28, 302 (1993) , doi: 10.1007/BF00357800
  • [4] D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469 (1998) , doi: 10.1016/S1359-0286(98)80009-0
  • [5] K. Shimamura, H. Takeda, T. Kohno, T. Fukuda, J. Cryst. Growth 163, 388 (1996) , doi: 10.1016/0022-0248(95)01002-5
  • [6] S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz, T.R. Shrout, J. Appl. Phys. 105, 114107 (2009) , doi: 10.1063/1.3142429
  • [7] F. Yu, Sh. Zhang, X. Zhao, D. Yuan, L. Qin, Q.-M. Wang, T.R. Shrout, J. Appl. Phys. 109, 114103 (2011) , doi: 10.1063/1.3592347
  • [8] H. Fritze, H.L. Tuller, G. Borchardt, T. Fukuda, MRS Proc. 604, 65 (1999) , doi: 10.1557/PROC-604-65
  • [9] H.L. Tuller, H. Fritze, US Patent 6370955, 2002 http://patents.google.com/patent/US6370955
  • [10] H. Ohsato, T. Iwataki, H. Morikoshi, Trans. Electr. Electron. Mater. 13, 171 (2012) , doi: 10.4313/TEEM.2012.13.4.171
  • [11] Yu. Suhak, M. Schulz, H. Wulfmeier, W.L. Johnson, A. Sotnikov, H. Schmidt, S. Ganschow, D. Klimm, H. Fritze, MRS Adv. 1, 1513 (2016) , doi: 10.1557/adv.2016.109
  • [12] X. Shi, D. Yuan, X. Yin, A. Wei, Sh. Guo, F. Yu, Solid State Commun. 142, 173 (2007) , doi: 10.1016/j.ssc.2007.01.047
  • [13] A. Sotnikov, H. Schmidt, M. Weihnacht, O. Buzanov, S. Sakharov, Proc. IEEE Int. Ultrason. Symp., 1688 (2013) , doi: 10.1109/ULTSYM.2013.0430
  • [14] Yu.V. Pisarevsky, B.V. Mill, N.A. Moiseeva, A.V. Yakimov, in: Proc. 18th European Frequency and Time Forum, Guildford (UK) 2004, p. 216
  • [15] S. Biryukov, H. Schmidt, A. Sotnikov, M. Weihnacht, S. Sakharov, O. Buzanov, Proc. IEEE Int. Ultrason. Symp., 882 (2014) , doi: 10.1109/ULTSYM.2014.0217
  • [16] IEEE Standard on Piezoelectricity, ANSI/IEEE Standards 176, 1 (1987) , doi: 10.1109/IEEESTD.1988.79638
  • [17] M. Schulz, H. Fritze, Renew. Energy 33, 336 (2008) , doi: 10.1016/j.renene.2007.05.016
  • [18] T. Ikeda, Fundamentals of piezoelectricity, Oxford University Press, Oxford 1990
  • [19] T. Schneider, D. Richter, S. Doerner, H. Fritze, P. Hauptmann, Sens. Actuat. B 111, 187 (2005) , doi: 10.1016/j.snb.2005.06.034
  • [20] J.A. Kosinski, R.A. Pastore, E. Bigler, M. Pereira da Cunha, D.C. Malocha, J. Detaint, Proc. IEEE Int. Freq. Contr. Symp., 278 (2001) , doi: 10.1109/FREQ.2001.956203
  • [21] Yu. Suhak, M. Schulz, A. Sotnikov, H. Schmidt, S. Ganschow, S. Sakharov, H. Fritze, Integr. Ferroelectr., in press
  • [22] S. Schmidtchen, D. Richter, H. Fritze, Sens. Actuators B 187, 247 (2013) , doi: 10.1016/j.snb.2012.11.015
  • [23] H. Fritze, J. Electroceram. 17, 625 (2006) , doi: 10.1007/s10832-006-9735-1
  • [24] W.L. Johnson, M. Schulz, H. Fritze, IEEE Trans. Ultrason. Ferroelect. Freq. Control 61, 1433 (2014) , doi: 10.1109/TUFFC.2014.3052

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n4p73kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.