Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 1017-1020
Article title

Manganite Nanoparticles as Promising Heat Mediators for Magnetic Hyperthermia: Comparison of Different Chemical Substitutions

Title variants
Languages of publication
Magnetostatic properties and AC magnetic heating characteristics of (La,Sr)MnO₃ nanoparticles with substitutions in manganese and lanthanum sublattices have been studied. The nanoparticles with average sizes in the range 25-38 nm were synthesized via sol-gel method. Fe substitution for Mn, as well as Sm substitution for La have been used in the experiment. It is shown that the increase in substitution level (for both Fe and Sm substitutions) results in lowering the Curie temperature T_{C} and weakening heating efficiency under the action of AC magnetic field. The results demonstrate that the action of AC field causes effective heating of nanoparticles at temperatures lower than T_{C}, while heating efficiency becomes strongly reduced at higher temperatures. It is proved experimentally that the substitutions in Mn sublattice result in more rapid changes of magnetic properties, as compared to the substitutions in La one. Thus, complex substitutions based on suitable combinations of substituting elements may serve as an efficient tool to "softly" tune the maximal temperature achieved during the AC magnetic field induced heating of nanoparticles, which is important for application of these materials as heat mediators for self-controlled magnetic nanohyperthermia.
Physical description
  • [1] Q.A. Pankhurst, N.T.K. Thanh, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 42, 224001 (2009) , doi: 10.1088/0022-3727/42/22/224001
  • [2] S. Hyun Noh, S.H. Moon, T.H. Shin, Y. Lim, J. Cheon, Nano Today 13, 61 (2017) , doi: 10.1016/j.nantod.2017.02.006
  • [3] E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Appl. Phys. Rev. 2, 041302 (2015) , doi: 10.1063/1.4935688
  • [4] A.A. Kuznetsov, O.A. Shlyakhtin, N.A. Brusentsov, O.A. Kuznetsov, Eur. Cells Mater. 3, 75 (2002)
  • [5] N.K. Prasad, K. Rathinasamy, D. Panda, D. Bahadur, J. Biomed. Mater. Res. B Appl. Biomater. 85, 409 (2008) , doi: 10.1002/jbm.b.30959
  • [6] E. Pollert, K. Knížek, M. Maryško, P. Kašpar, S. Vasseur, E. Duguet, J. Magn. Magn. Mater. 316, 122 (2007) , doi: 10.1016/j.jmmm.2007.02.031
  • [7] O. Kaman, T. Dědourková, J. Koktan, J. Kuličková, M. Maryško, P. Veverka, R. Havelek, K. Královec, K. Turnovcová, P. Jendelová, A. Schröfel, L. Svoboda, J. Nanoparticle Res. 18, 100 (2016) , doi: 10.1007/s11051-016-3402-5
  • [8] A. ur Rashid, S. Manzoor, J. Magn. Magn. Mater. 420, 232 (2016) , doi: 10.1016/j.jmmm.2016.07.008
  • [9] A.G. Belous, O.I. V'yunov, E.V. Pashkova, O.Z. Yanchevskii, A.I. Tovstolytkin, A.M. Pogorelyi, Inorg. Mater. 39, 161 (2003) , doi: 10.1023/A:1022198613723
  • [10] K. Zhang, T. Holloway, J. Pradhan, M. Bahoura, R. Bah, R.R. Rakhimov, A.K. Pradhan, R. Prabakaran, G.T. Ramesh, J. Nanosci. Nanotechnol. 10, 5520 (2010) , doi: 10.1166/jnn.2010.2437
  • [11] D.H. Manh, P.T. Phong, P.H. Nam, D.K. Tung, N.X. Phuc, I.J. Lee, Phys. B Condens. Matter 444, 94 (2014) , doi: 10.1016/j.physb.2014.03.025
  • [12] J.R. Sun, G.H. Rao, B.G. Shen, H.K. Wong, Appl. Phys. Lett. 73, 2998 (1998) , doi: 10.1063/1.122656
  • [13] K. Ghosh, S. Ogale, R. Ramesh, R. Greene, T. Venkatesan, K. Gapchup, R. Bathe, S. Patil, Phys. Rev. B 59, 533 (1999) , doi: 10.1103/PhysRevB.59.533
  • [14] Y. Shlapa, S. Solopan, A. Bodnaruk, M. Kulyk, V. Kalita, Y. Tykhonenko-Polishchuk, A. Tovstolytkin, A. Belous, Nanoscale Res. Lett. 12, 100 (2017) , doi: 10.1186/s11671-017-1884-4
  • [15] J.R. Sun, G.H. Rao, J.K. Liang, Appl. Phys. Lett. 70, 1900 (1997) , doi: 10.1063/1.118725
  • [16] A.G. Belous, S.O. Solopan, O.V. Yelenich, A.I. Tovstolytkin, T.V. Kolodiazhnyi, S.P. Osinsky, L.N. Bubnovskaya, AIP Conf. Proc. 1627, 13 (2014) , doi: 10.1063/1.4901650
  • [17] Y. Shlapa, M. Kulyk, V. Kalita, T. Polek, A. Tovstolytkin, J.-M. Greneche, S. Solopan, A. Belous, Nanoscale Res. Lett. 11, 24 (2016) , doi: 10.1186/s11671-015-1223-6
  • [18] Y. Shlapa, S. Solopan, A. Bodnaruk, M. Kulyk, V. Kalita, Y. Tykhonenko-Polishchuk, A. Tovstolytkin, V. Zinchenko, A. Belous, J. Alloys Comp. 702, 31 (2017) , doi: 10.1016/j.jallcom.2017.01.222
  • [19] L. Bubnovskaya, A. Belous, S. Solopan, A. Kovelskaya, L. Bovkun, A. Podoltsev, I. Kondtratenko, S. Osinsky, J. Nanopart. 2014, 1 (2014) , doi: 10.1155/2014/278761
  • [20] E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001) , doi: 10.1016/S0370-1573(00)00121-6
  • [21] O.Z. Yanchevskii, O.I. V'yunov, A.G. Belous, A.I. Tovstolytkin, Low Temp. Phys. 32, 134 (2006) , doi: 10.1063/1.2171513
  • [22] K. Dörr, J. Phys. D. Appl. Phys. 39, R125 (2006) , doi: 10.1088/0022-3727/39/7/R01
  • [23] J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011) , doi: 10.1063/1.3551582
  • [24] V.M. Kalita, A.I. Tovstolytkin, S.M. Ryabchenko, O.V. Yelenich, S.O. Solopan, A.G. Belous, Phys. Chem. Chem. Phys. 17, 18087 (2015) , doi: 10.1039/c5cp02822a
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.