PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 1006-1012
Article title

Synthesis, Properties and Applications of some Magnetic Oxide Based Nanoparticles and Films

Content
Title variants
Languages of publication
EN
Abstracts
EN
The work highlights peculiar features of synthesis and summarizes important properties of nanoparticles and films based on two types of oxide magnets: with spinel and perovskite-type structures. The attention is drawn to the differences in the processes underlying the formation of crystalline phase in the materials of each group. It is shown that for the spinels, the formation of weakly agglomerated crystalline nanoparticles can occur in the process of synthesis, but for the perovskite-like magnets, the formation of crystalline nanoparticles requires additional high-temperature treatment. It is demonstrated that synthesized nanoparticles and films may find wide practical applications, particularly as the heat mediators in hyperthermia treatment therapy, as components of left-handed media, ferroelectric-ferromagnetic layered structures and composite microwave resonators. They also may be used as integral parts of composite structures, which possess magnetic-field-controlled properties and display giant magnetocaloric effect.
Year
Volume
133
Issue
4
Pages
1006-1012
Physical description
Dates
published
2018-04
References
  • [1] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993), doi: 10.1103/PhysRevLett.71.2331
  • [2] K.H. Graham, MRS Bull. 17, 26 (1992), doi: 10.1557/S0883769400040586
  • [3] D.B. Williams, The Transition Electron Microscope, Springer Science+Business Media, New York 1996, doi: 10.1007/978-1-4757-2519-3_1
  • [4] L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, Z. Gu, Theranostics 3, 595 (2013), doi: 10.7150/thno.5366
  • [5] O. Veiseh, J.W. Gunn, M. Zhang, Adv. Drug Deliv. Rev. 62, 284 (2010), doi: 10.1016/j.addr.2009.11.002
  • [6] B. Thiesen, A. Jordan, Int. J. Hypertherm. 24, 467 (2008), doi: 10.1080/02656730802104757
  • [7] B.L. Cushing, V.L. Kolesnichenko, C.J. O'Connor, Chem. Rev. 104, 3893 (2004), doi: 10.1021/cr030027b
  • [8] D. Peddis, F. Orrum, A. Ardu, C. Cannas, A. Musinu, G. Piccaluga, Chem. Mater. 24, 1062 (2012), doi: 10.1021/cm203280y
  • [9] M. Veverka, K. Zaveta, O. Kaman, P. Veverka, K. Knızek, E. Pollert, M. Burian, P. Kaspar, J. Phys. D Appl. Phys. 47, 065503 (2014), doi: 10.1088/0022-3727/47/6/065503
  • [10] L.A. Reznitskii, A.S. Guzei, Russ. Chem. Rev. 47, 99 (1978), doi: 10.1070/RC1978v047n02ABEH002213
  • [11] I.I. Caneva, D.G. Kratogin, V.G. Andreev, L.M. Letyuk, Ferrite Materials and Components Magnetoelectronics, MISIS, Moscow 2005
  • [12] D.L. Leslie-Pelecky, R.D. Rieke, Chem. Mater. 8, 1770 (1996), doi: 10.1021/cm960077f
  • [13] S. Morup, M.F. Hansen, C. Frandsen, Compr. Nanosci. Technol. 1, 437 (2011)
  • [14] P. Dey, T.K. Nath, Appl. Phys. Lett. 89, 163102 (2006), doi: 10.1063/1.2362595
  • [15] V.M. Kalita, A.I. Tovstolytkin, S.M. Ryabchenko, O.V. Yelenich, S.O. Solopan, A.G. Belous, Phys. Chem. Chem. Phys. 17, 18087 (2015), doi: 10.1039/C5CP02822A
  • [16] O. Shydlovska, N. Zholobak, S. Dybkova, S. Osinsky, L. Bubnovskaya, O. Yelenich, S. Solopan, A. Belous, Eur. J. Nanomed. 9, 33 (2014)
  • [17] L. Bubnovskaya, A. Belous, S. Solopan, A. Kovelskaya, L. Bovkun, A. Podoltsev, I. Kondtratenko, S. Osinsky, J. Nanopart. 2014, 278761 (2014), doi: 10.1155/2014/278761
  • [18] T. Goto, A.V. Dorofeenko, A.M. Merzlikin, A.V. Baryshev, A.P. Vinogradov, M. Inoue, A.A. Lisyansky, A.B. Granovsky, Phys. Rev. Lett. 101, 113902 (2008), doi: 10.1103/PhysRevLett.101.113902
  • [19] M.K. Khodzitsky, T.V. Kalmykova, S.I. Tarapov, D.P. Belozorov, A.M. Pogorily, A.I. Tovstolytkin, A.G. Belous, S.A. Solopan, Appl. Phys. Lett. 95, 082903 (2009), doi: 10.1063/1.3204004
  • [20] M.K. Khodzitsky, S.I. Tarapov, D.P. Belozorov, A.M. Pogorily, A.I. Tovstolytkin, A.G. Belous, S.A. Solopan, Appl. Phys. Lett. 97, 131912 (2010), doi: 10.1063/1.3491155
  • [21] R. Ramesh, N.A. Spaldin, Nature Mater. 6, 21 (2007), doi: 10.1038/nmat1805
  • [22] D.A. Filippov, M.I. Bichurin, V.M. Petrov, V.M. Laletin, G. Scrinivasan, Phys. Solid State 46, 1674 (2004), doi: 10.1134/1.1799186
  • [23] C. Wang, K.A. Zaki, IEEE Microwave Mag. 8, 115 (2007), doi: 10.1109/MMM.2007.903648
  • [24] A.G. Belous, O.V. Ovchar, M. Macek-Krzmanc, M. Valant, J. Eur. Ceram. Soc. 26, 3733 (2006), doi: 10.1016/j.jeurceramsoc.2005.12.013
  • [25] I.V. Zavislyak, M.A. Popov, E.D. Solovyova, S.A. Solopan, A.G. Belous, Mater. Sci. Eng. B 197, 36 (2015), doi: 10.1016/j.mseb.2015.03.008
  • [26] The Nobel Prize in Chemistry 1949 http://nobelprize.org/nobel_prizes/chemistry/laureates/1949/
  • [27] V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997), doi: 10.1103/PhysRevLett.78.4494
  • [28] X. Moya, L.E. Hueso, F. Maccherozzi, A.I. Tovstolytkin, D.I. Podyalovskii, C. Ducati, L.C. Philips, M. Ghidini, O. Hovorka, A. Berger, M.E. Vickers, E. Defay, S.S. Dheshi, N.D. Mathhur, Nature Mater. 12, 52 (2013), doi: 10.1038/nmat3463
  • [29] L. Caron, Z.Q. Ou, T.T. Nguyen, D.C. Thanh, O. Tegus, E. Bruck, J. Magn. Magn. Mater. 321, 3559 (2009), doi: 10.1016/j.jmmm.2009.06.086
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p57kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.