Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 1003-1005

Article title

Electrocaloric Cooling - A New Application of Relaxor Ferroelectrics

Content

Title variants

Languages of publication

EN

Abstracts

EN
Until now, relaxor ferroelectrics are considered as a class of disordered materials possessing peculiar structures and properties which are not yet generalized into a universal model explaining the significant amount of experimental data available. In this work, we demonstrate that one feature of relaxor ferroelectrics - the extraordinary dielectric response - is well-suited for application in electrocaloric refrigerators. We consider the electrocaloric effect with special attention to relaxor ferroelectrics, the dielectric response in the temperature region of interest, the efficiency and the figure of merit of relaxor ferroelectrics for electrocaloric application.

Keywords

Contributors

author
  • TU Dresden, Solid State Electronics Laboratory, 01062 Dresden, Germany
author
  • TU Dresden, Solid State Electronics Laboratory, 01062 Dresden, Germany

References

  • [1] G. Suchaneck, G. Gerlach, Mater. Today Proc. 3, 622 (2016) , doi: 10.1016/j.matpr.2016.01.100
  • [2] G. Suchaneck, in: Proc. 2016 Joint IEEE Int. Symp. on the Applications of Ferroelectrics, European Conf. on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), Darmstadt (Germany), 2016 , doi: 10.1109/ISAF.2016.7578104
  • [3] G. Suchaneck, O. Pakhomov, G. Gerlach, in: Refrigeration, Ed. Orhan Ekren, Intech, Rijeka 2017, pp. 19-43
  • [4] S.T. Liu, J.D. Zook, D. Long, Ferroelectrics 9, 39 (1975) , doi: 10.1080/00150197508240079
  • [5] J. McPherson, J.-Y. Kim, A. Shanware, H. Mogul, Appl. Phys. Lett. 82, 2121 (2003) , doi: 10.1063/1.1565180
  • [6] R.C. Kell, N.J. Hellicar, Acustica 6, 235 (1956)
  • [7] D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982) , doi: 10.1111/j.1151-2916.1982.tb10778.x
  • [8] Zhi Yu, Chen Ang, Ruyan Guo, A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002) , doi: 10.1063/1.1495069
  • [9] W. Kleemann, S. Miga, J. Dec, J. Zhai, Appl. Phys. Lett. 102, 232907 (2013) , doi: 10.1063/1.4811089
  • [10] C. Lei, A.A. Bokov, Z.-G. Ye, J. Appl. Phys. 101, 084105 (2007) , doi: 10.1063/1.2715522
  • [11] S. Roberts, J. Am. Ceram. Soc. 33, 63 (1950) , doi: 10.1111/j.1151-2916.1950.tb14168.x
  • [12] S. Hirose, T. Usui, S. Crossley, B. Nair, A. Ando, X. Moya, N.D. Mathur, APL Mater. 4, 064105 (2016) , doi: 10.1063/1.4950796
  • [13] A. Bokov, Z.-G. Ye, J. Adv. Diel. 2, 1241010 (2012) , doi: 10.1142/S2010135X1241010X
  • [14] W. Dmowski, S.B. Vakhrushev, I.-K. Jeong, M.P. Hehlen, F. Trouw, T. Egami, Phys. Rev. Lett. 100, 137602 (2008) , doi: 10.1103/PhysRevLett.100.137602
  • [15] G. Suchaneck, G. Gerlach, Phase Transit. 88, 333 (2015) , doi: 10.1080/01411594.2014.989225
  • [16] J. Peräntie, H.N. Tailor, J. Hagberg, H. Jantunen, Z.-G. Ye, J. Appl. Phys. 114, 174105 (2013) , doi: 10.1063/1.4829012
  • [17] X.G. Tang, K.-H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004) , doi: 10.1016/j.actamat.2004.07.028
  • [18] K.M. Johnson, J. Appl. Phys. 33, 2826 (1962) , doi: 10.1063/1.1702558
  • [19] Biaolin Peng, Huiqing Fan, Qi Zhang, J. Am. Ceram. Soc. 95, 1651 (2012) , doi: 10.1111/j.1551-2916.2011.05047.x
  • [20] B. Neese, Baojin Chu, Sheng-Guo Lu, Yong Wang, E. Furman, Q.M. Zhang, Science 321, 821 (2008) , doi: 10.1126/science.1159655
  • [21] R. Herdier, M. Detalle, D. Jenkins, C. Soyer, D. Remiens, Sens. Actuat. A 148, 122 (2008) , doi: 10.1016/j.sna.2008.07.021
  • [22] Ye Zhao, Xihong Hao, Qi Zhang, ACS Appl. Mater. Interfaces 6, 11633 (2014) , doi: 10.1021/am502415z

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n4p56kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.