Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Until now, relaxor ferroelectrics are considered as a class of disordered materials possessing peculiar structures and properties which are not yet generalized into a universal model explaining the significant amount of experimental data available. In this work, we demonstrate that one feature of relaxor ferroelectrics - the extraordinary dielectric response - is well-suited for application in electrocaloric refrigerators. We consider the electrocaloric effect with special attention to relaxor ferroelectrics, the dielectric response in the temperature region of interest, the efficiency and the figure of merit of relaxor ferroelectrics for electrocaloric application.
Discipline
- 84.60.Bk: Performance characteristics of energy conversion systems; figure of merit
- 77.70.+a: Pyroelectric and electrocaloric effects
- 77.80.Jk: Relaxor ferroelectrics
- 77.22.Ch: Permittivity (dielectric function)(for low-permittivity dielectric films, see 77.55.Bh; for high-permittivity gate dielectric films, 77.55.D-)
Journal
Year
Volume
Issue
Pages
1003-1005
Physical description
Dates
published
2018-04
Contributors
author
- TU Dresden, Solid State Electronics Laboratory, 01062 Dresden, Germany
author
- TU Dresden, Solid State Electronics Laboratory, 01062 Dresden, Germany
References
- [1] G. Suchaneck, G. Gerlach, Mater. Today Proc. 3, 622 (2016) , doi: 10.1016/j.matpr.2016.01.100
- [2] G. Suchaneck, in: Proc. 2016 Joint IEEE Int. Symp. on the Applications of Ferroelectrics, European Conf. on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), Darmstadt (Germany), 2016 , doi: 10.1109/ISAF.2016.7578104
- [3] G. Suchaneck, O. Pakhomov, G. Gerlach, in: Refrigeration, Ed. Orhan Ekren, Intech, Rijeka 2017, pp. 19-43
- [4] S.T. Liu, J.D. Zook, D. Long, Ferroelectrics 9, 39 (1975) , doi: 10.1080/00150197508240079
- [5] J. McPherson, J.-Y. Kim, A. Shanware, H. Mogul, Appl. Phys. Lett. 82, 2121 (2003) , doi: 10.1063/1.1565180
- [6] R.C. Kell, N.J. Hellicar, Acustica 6, 235 (1956)
- [7] D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982) , doi: 10.1111/j.1151-2916.1982.tb10778.x
- [8] Zhi Yu, Chen Ang, Ruyan Guo, A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002) , doi: 10.1063/1.1495069
- [9] W. Kleemann, S. Miga, J. Dec, J. Zhai, Appl. Phys. Lett. 102, 232907 (2013) , doi: 10.1063/1.4811089
- [10] C. Lei, A.A. Bokov, Z.-G. Ye, J. Appl. Phys. 101, 084105 (2007) , doi: 10.1063/1.2715522
- [11] S. Roberts, J. Am. Ceram. Soc. 33, 63 (1950) , doi: 10.1111/j.1151-2916.1950.tb14168.x
- [12] S. Hirose, T. Usui, S. Crossley, B. Nair, A. Ando, X. Moya, N.D. Mathur, APL Mater. 4, 064105 (2016) , doi: 10.1063/1.4950796
- [13] A. Bokov, Z.-G. Ye, J. Adv. Diel. 2, 1241010 (2012) , doi: 10.1142/S2010135X1241010X
- [14] W. Dmowski, S.B. Vakhrushev, I.-K. Jeong, M.P. Hehlen, F. Trouw, T. Egami, Phys. Rev. Lett. 100, 137602 (2008) , doi: 10.1103/PhysRevLett.100.137602
- [15] G. Suchaneck, G. Gerlach, Phase Transit. 88, 333 (2015) , doi: 10.1080/01411594.2014.989225
- [16] J. Peräntie, H.N. Tailor, J. Hagberg, H. Jantunen, Z.-G. Ye, J. Appl. Phys. 114, 174105 (2013) , doi: 10.1063/1.4829012
- [17] X.G. Tang, K.-H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004) , doi: 10.1016/j.actamat.2004.07.028
- [18] K.M. Johnson, J. Appl. Phys. 33, 2826 (1962) , doi: 10.1063/1.1702558
- [19] Biaolin Peng, Huiqing Fan, Qi Zhang, J. Am. Ceram. Soc. 95, 1651 (2012) , doi: 10.1111/j.1551-2916.2011.05047.x
- [20] B. Neese, Baojin Chu, Sheng-Guo Lu, Yong Wang, E. Furman, Q.M. Zhang, Science 321, 821 (2008) , doi: 10.1126/science.1159655
- [21] R. Herdier, M. Detalle, D. Jenkins, C. Soyer, D. Remiens, Sens. Actuat. A 148, 122 (2008) , doi: 10.1016/j.sna.2008.07.021
- [22] Ye Zhao, Xihong Hao, Qi Zhang, ACS Appl. Mater. Interfaces 6, 11633 (2014) , doi: 10.1021/am502415z
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p56kz