Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The comprehensive analysis of transmission spectra for light propagated through ITO/ZnO/CdS multilayers to solar cell active layer of CdTe is performed. Optimal thickness of ZnO high resistive oxide supplying minimal optical losses in CdTe solar cell working range was determined. We get the maximal light transmission to active layer for ZnO film with thickness of 230 nm. The advantages of glass superstrate for multilayer structure with ZnO upper layer is discussed in comparison with the structure with ITO upper layer. Calculation of transmittance for textured surfaces of top face of solar element showed significant minimization of optical losses in the structure with ITO upper layer textured by inverted pyramids while for textured glass superstrate there is no ponderable profit as compared to multilayer structure with planar surface.
Discipline
- 78.67.Pt: Multilayers; superlattices; photonic structures; metamaterials(see also 81.05.Xj, Metamaterials for chiral, bianisotropic and other complex media)
- 78.20.Ci: Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity)
- 78.40.-q: Absorption and reflection spectra: visible and ultraviolet(for infrared spectra, see 78.30.-j; for optical spectra of superconductors, see 74.25.nd; for time resolved reflection spectroscopy, see 78.47.jg; for multiphoton absorption, see 79.20.Ws in impact phenomena)
- 88.40.jm: Thin film III-V and II-VI based solar cells
Journal
Year
Volume
Issue
Pages
981-983
Physical description
Dates
published
2018-04
Contributors
author
- Lviv Polytechnic National University, 12, S. Bandera Str., 79013, Lviv, Ukraine
author
- Lviv Polytechnic National University, 12, S. Bandera Str., 79013, Lviv, Ukraine
author
- Lviv Polytechnic National University, 12, S. Bandera Str., 79013, Lviv, Ukraine
References
- [1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Photovolt. Res. Appl. 25, 3 (2017) , doi: 10.1002/pip.2855
- [2] B.L. Williams, J.D. Major, L. Bowen, L. Phillips, G. Zoppi, I. Forbes, K. Durose, Sol. En. Mater. Sol. Cells 124, 34 (2014) , doi: 10.1016/j.solmat.2014.01.017
- [3] T. Liu, X. He, J. Zhang, L. Feng, L. Wu, W. Li, G. Zeng, B. Li, J. Semicond. 33, 093003 (2012) , doi: 10.1088/1674-4926/33/9/093003
- [4] Z. Derkaoui, Z. Kebbab, R. Miloua, N. Benramdane, Solid State Commun. 149, 1231 (2009) , doi: 10.1016/j.ssc.2009.04.014
- [5] S. Adachi, T. Kimura, N. Suzuki, J. Appl. Phys. 74, 3435 (1993) , doi: 10.1063/1.354543
- [6] S. Ninomiya, S. Adachi, J. Appl. Phys. 78, 1183 (1995) , doi: 10.1063/1.360355
- [7] T.A.F. König, P.A. Ledin, J. Kerszulis, M.A. Mahmoud, M.A. El-Sayed, J.R. Reynoldsk, V.V. Tsukruk, ACS Nano 8, 6182 (2014) , doi: 10.1021/nn501601e
- [8] C. Stelling, C.R. Singh, M. Karg, T.A.F. König, M. Thelakkat, M. Retsch, Sci. Rep. 7, 42530 (2017) , doi: 10.1038/srep42530
- [9] H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Wiley, Chichester 2007 , doi: 10.1002/9780470060193
- [10] F. Scandonne, L. Ballerini, Nuovo Cim. 3, 81 (1946)
- [11] P. Shirley, C.Y. Wang, K. Zimmerman, ACM Trans. Graph. 15, 1 (1996) , doi: 10.1145/226150.226151
- [12] M. Zapata-Torres, J.L. Fernández-Muńoz, Superficies Vacío 28, 61 (2015)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p50kz