PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 965-972
Article title

Optical Investigation of the Cu Ions Diffusion into Bulk Lithium Niobate

Content
Title variants
Languages of publication
EN
Abstracts
EN
Spatial changes of optical properties of bulk LiNbO₃ crystal were investigated after annealing in CuO powder. The incorporation of copper ions into the crystal was confirmed by registration of additional absorption spectra that revealed formation of the absorption bands of both Cu⁺ (400 nm) and Cu²⁺ (1000 nm) ions. The changes of optical absorption caused by thermal treatment were registered along the direction of diffusion by the probe beam perpendicular to this direction. The anisotropy of diffusion was revealed. The maxima were observed on the depth dependences of additional absorption both for the wavelengths of 400 and 1000 nm for all main crystallographic directions. The concentrations of copper ions were calculated in accordance with the Smakula-Dexter formula. The X-ray diffraction study revealed reflexes which probably belong to CuNb₂O₆, CuNbO₃ and CuO. The halo was observed on these diffraction patterns that confirms the formation of the scattering centers (about 1 nm in diameter) in the near-surface region.
Keywords
EN
Contributors
author
  • Lviv Polytechnic National University, Lviv, Ukraine
  • Scientific Research Company "Electron-Carat", Lviv, Ukraine
author
  • Lviv Polytechnic National University, Lviv, Ukraine
  • Scientific Research Company "Electron-Carat", Lviv, Ukraine
author
  • Lviv Polytechnic National University, Lviv, Ukraine
author
  • Lviv Polytechnic National University, Lviv, Ukraine
author
  • Lviv Polytechnic National University, Lviv, Ukraine
author
  • Lviv Polytechnic National University, Lviv, Ukraine
  • Lviv Polytechnic National University, Lviv, Ukraine
  • Institute of Physics, PAS, Warsaw, Poland
author
  • Institute of Physics, PAS, Warsaw, Poland
  • Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland
author
  • Department of Electronics and Communication Engg. MNIT, Jaipur, India
author
  • Department of Electronics and Communication Engg. MNIT, Jaipur, India
author
  • Department of Electronics and Communication Engg. MNIT, Jaipur, India
References
  • [1] Properties of Lithium Niobate, Ed. K.K. Wong, INSPEC, London 2002
  • [2] T. Volk, M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer, Berlin 2009
  • [3] Y. Kong, S. Liu, J. Xu, Materials 5, 1954 (2012) , doi: 10.3390/ma5101954
  • [4] L. Arizmendi, J. Cabrera, F. Agullo-Lopez, J. Phys. C Solid State Phys. 17, 515 (1984) , doi: 10.1088/0022-3719/17/3/021
  • [5] I. Pracka, A. Bajor, S. Kaczmarek, M. Swirkowicz, B. Kaczmarek, J. Kisielewski, T. Lukasiewicz, Cryst. Res. Technol. 34, 627 (1999) , doi: 10.1002/(SICI)1521-4079(199906)34:5/6<627::AID-CRAT627>3.0.CO;2-0
  • [6] T. Gebre, A.K. Batra, P. Guggilla, M. Aggarwal, R. Lal, Ferroelectr. Lett. 31, 131 (2004) , doi: 10.1080/07315170490901436
  • [7] D. Bryan, R. Gerson, H. Tomaschke, Appl. Phys. Lett. 44, 847 (1984) , doi: 10.1063/1.94946
  • [8] T. Volk, V. Pryalkin, N. Rubinina, Opt. Lett. 15, 996 (1990) , doi: 10.1364/OL.15.000996
  • [9] M. Nakamura, S. Takekawa, Y. Liu, K. Kitamura, J. Cryst. Growth 281, 549 (2005) , doi: 10.1016/j.jcrysgro.2005.04.069
  • [10] J. de Sandro, J. Jones, D. Shepherd, M. Hempstead, J. Wang, A. Tropper, IEEE Photon. Technol. Lett. 8, 209 (1996) , doi: 10.1109/68.484243
  • [11] K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, J. Appl. Phys. 84, 5191 (1998) , doi: 10.1063/1.368769
  • [12] L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, Appl. Phys. Lett. 86, 131914 (2005) , doi: 10.1063/1.1895478
  • [13] Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, J. Xu, Appl. Phys. Lett. 91, 081908 (2007) , doi: 10.1063/1.2773742
  • [14] L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, J. Xu, Opt. Lett. 35, 883 (2010) , doi: 10.1364/OL.35.000883
  • [15] J. Almeida, G. Boyle, A. Leite, J. Appl. Phys. 78, 2193 (1995) , doi: 10.1063/1.360134
  • [16] G. Maggioni, G. Battaglin, V. Tarasova, N. Ktasil'nikova, L. Bogomolova, S. Kostritskii, V. Fedorov, Y. Korkishko, P. Mazzoldi, N. Argiolas, E. Cattaruzza, M. Bazzan, C. Sada, Mater. Sci. Eng. B 118, 155 (2005) , doi: 10.1016/j.mseb.2004.12.025
  • [17] M. Hempstead, J. Appl. Phys. 74, 5483 (1993) , doi: 10.1063/1.354229
  • [18] W. Huang, W. Wang, IEEE Photon. Technol. Lett. 19, 1679 (2007) , doi: 10.1109/LPT.2007.905182
  • [19] T. Nozawa, K. Noguchi, H. Miyazawa, K. Kawano, Appl. Opt. 30, 1085 (1991) , doi: 10.1364/AO.30.001085
  • [20] V. Ivanov, V. Ganshin, Yu. Korkishko, Vacuum 43, 317 (1992) , doi: 10.1016/0042-207X(92)90164-R
  • [21] F. Caccavale, C. Sada, F. Segato, L. Bogomolova, N. Krasil'nikova, Yu. Korkishko, V. Fedorov, T. Morozova, J. Mater. Res. 15, 1120 (2000) , doi: 10.1557/JMR.2000.0159
  • [22] S. Kar, K. Bartwal, Mater. Lett. 62, 3934 (2008) , doi: 10.1016/j.matlet.2008.05.031
  • [23] T. Kobayashi, K. Muto, J. Kai, A. Kawamori, J. Magn. Res. 34, 459 (1979) , doi: 10.1016/0022-2364(79)90133-1
  • [24] J. Hukriede, B. Gather, D. Kip, E. Krätzig, Phys. Status Solidi A 172, R3 (1999) , doi: 10.1002/(SICI)1521-396X(199904)172:2<R3::AID-PSSA99993>3.0.CO;2-G
  • [25] D. Kip, B. Gather, H. Bendig, E. Krätzig, Phys. Status Solidi A 139, 241 (1993) , doi: 10.1002/pssa.2211390122
  • [26] O. Mikami, Opt. Commun. 30, 11 (1974) , doi: 10.1016/0030-4018(74)90325-3
  • [27] J. Noda, T. Saku, N. Uchida, Appl. Phys. Lett. 25, 308 (1974) , doi: 10.1063/1.1655485
  • [28] K. Peithmann, J. Hukriede, K. Buse, E. Krätzig, Phys. Rev. B 61, 4615 (2000) , doi: 10.1103/PhysRevB.61.4615
  • [29] K. Buse, F. Jermann, E. Krätzig, Appl. Phys. A Solids Surf. 58, 191 (1994) , doi: 10.1007/BF00324375
  • [30] E. Krätzig, R. Orlowski, Ferroelectrics 27, 241 (1980) , doi: 10.1080/00150198008226108
  • [31] M. Clark, F. DiSalvo, A. Glass, G. Peterson, J. Chem. Phys. 59, 6209 (1973) , doi: 10.1063/1.1680000
  • [32] A. Petrosyan, R. Khaghatryan, E. Sharoyan, Phys. Status Solidi B 122, 725 (1984) , doi: 10.1002/pssb.2221220238
  • [33] A. Matkovskii, P. Potera, D. Sugak, Ya. Zhydachevskii, V. Pankratov, D. Millers, L. Grigorjeva, I. Pracka, T. Lukasiewicz, Cryst. Res. Technol. 38, 388 (2003) , doi: 10.1002/crat.200310048
  • [34] P. Potera, S. Ubizskii, D. Sugak, T. Lukasiewicz, Radiat. Measur. 42, 232 (2007) , doi: 10.1016/j.radmeas.2006.12.004
  • [35] I. Solskii, D. Sugak, M. Vakiv, Acta Phys. Pol. A 124, 314 (2013) , doi: 10.12693/APhysPolA.124.314
  • [36] D. Sugak, Solid State Phenom. 230, 228 (2015) , doi: 10.4028/www.scientific.net/SSP.230.228
  • [37] D. Sugak, I. Syvorotka, O. Buryy, U. Yakhnevych, I. Solskii, N. Martynyuk, Yu. Suhak, G. Singh, V. Janyani, S. Ubizskii, IOP Conf. Series Mater. Sci. Eng. 169, 012019 (2017) , doi: 10.1088/1757-899X/169/1/012019
  • [38] D. Sugak, I. Syvorotka, O. Buryy, U. Yakhnevych, I. Solskii, N. Martynyuk, Yu. Suhak, A. Suchocki, Ya. Zhydachevskii, R. Jakiela, S. Ubizskii, G. Singh, V. Janyani, Opt. Mater. 70, 106 (2017) , doi: 10.1016/j.optmat.2017.05.022
  • [39] R. Jenkins, R. Snyder, Introduction to X-ray Powder Diffractometry, Wiley, 1996 , doi: 10.1002/9781118520994.ch3
  • [40] D. Dexter, Phys. Rev. 101, 48 (1956) , doi: 10.1103/PhysRev.101.48
  • [41] D.E. Zelmon, D.L. Small, D. Jundt, J. Opt. Soc. Am. B 14, 3319 (1997) , doi: 10.1364/JOSAB.14.003319
  • [42] D.Yu. Sugak, A.O. Matkovskii, I.M. Solskii, B.N. Kopko, V.Ya. Oliinyk, I.V. Stefanskii, V.M. Gaba, V.V. Grabovskii, I.M. Zaritskii, L.G. Rakitina, Cryst. Res. Technol. 32, 805 (1997) , doi: 10.1002/crat.2170320612
  • [43] O.F. Schirmer, M. Imlau, C. Merschjann, B. Schoke, J. Phys. Condens. Matter 21, 123201 (2009) , doi: 10.1088/0953-8984/21/12/123201
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p47kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.