PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 887-891
Article title

Effect of RF Magnetron Sputtered Nickel Oxide Thin Films as an Anode Buffer Layer in a P₃HT:PCBM Bulk Hetero-Junction Solar Cells

Content
Title variants
Languages of publication
EN
Abstracts
EN
Bulk heterojunction solar cells were investigated using poly(3-hexylthiophene) (P₃HT):[6,6]-phenyl-C₆₁ butyric acid methyl ester (PCBM) with a nickel oxide (NiO) anode buffer layer between the photoactive layer and an indium tin oxide (ITO) anode layer. The NiO anode buffer layer was deposited using radio frequency magnetron sputtering on an ITO electrode layer for effective hole transport and electron blocking. The NiO film is a p-type semiconductor with resistivity of 0.35 Ω cm. The power conversion efficiency was improved substantially by the NiO anode buffer layer compared to a solar cell with an anode buffer layer made from poly(3,4-ethylenedioxythiophene) (PEDOT):poly(styrene sulfonate) (PSS). The solar cell with a 10 nm thick NiO anode buffer layer had a power conversion efficiency of 4.71%. These results are explained by the improved charge transport across the interface between the active layer and ITO electrode.
Publisher

Year
Volume
133
Issue
4
Pages
887-891
Physical description
Dates
published
2018-04
Contributors
author
  • Department of Materials Engineering, Hoseo University, Asan, Chungnam 336-795, Republic of Korea
author
  • Department of Materials Engineering, Hoseo University, Asan, Chungnam 336-795, Republic of Korea
  • Faculty of Nanotechnology and Advanced Materials, Sejong University, Seoul 143-747, Republic of Korea
References
  • [1] H.-L. Yip, S.K. Hau, N.S. Baek, A.K.-Y. Jen, Appl. Phys. Lett. 92, 193313-1 (2008) , doi: 10.1063/1.29195242
  • [2] B.C. Thompson, J.M.J. Frechet, Chem. Int. Ed. 47, 58 (2008) , doi: 10.1002/anie.200702506
  • [3] H.-K. Park, J.-W. Kang, S.-I. Na, D.-Y. Kim, H.-K. Kim, Sol. Energy Mater. Sol. Cells 93, 1994 (2009) , doi: 10.1016/j.solmat.2009.07.016
  • [4] F.C. Krebs, T. Tromholt, M. Jorgensen, Nanoscale 2, 873 (2010) , doi: 10.1039/B9NR00430K
  • [5] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Sol. Energy Mater. Sol. Cells 90, 3520 (2000) , doi: 10.1016/j.solmat.2006.06.041
  • [6] V. Shrotriya, G. Li, Y. Yao, C-W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006) , doi: 10.1063/1.2174093
  • [7] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006) , doi: 10.1063/1.2359579
  • [8] K.X. Steirer, J.P. Chesin, N.E. Widjonarko, J.J. Berry, A. Miedaner, D.S. Ginley, D.C. Olson, Org. Electr. 11, 1414 (2010) , doi: 10.1016/j.orgel.2010.05.008
  • [9] K. Ellmer, J. Phys. D Appl. Phys. 33, R17 (2000) , doi: 10.1088/0022-3727/33/4/201
  • [10] S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.-S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.-S. Choi, B.H. Park, Appl. Phys. Lett. 85, 5655 (2004) , doi: 10.1063/1.1831560
  • [11] J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966) , doi: 10.1002/pssb.19660150224
  • [12] R. Betancur, M. Maymo, X. Elias, L.T. Vuong, J. Martorell, Sol. Energy Mater. Sol. Cells 95, 735 (2011) , doi: 10.1016/j.solmat.2010.10.104
  • [13] D.T. Nguyen, A. Ferrec, J. Keraudy, J.C. Bernede, N. Stephant, L. Cattin, P.-Y. Jouan, Appl. Surf. Sci. 311, 110 (2014) , doi: 10.1016/j.apsusc.2014.05.02010.1016/j.solmat.2010.10.104
  • [14] N. Sun, G. Fang, P. Qin, Q. Zheng, M. Wang, X. Fan, F. Cheng, J. Wan, X. Zhao, Sol. Energy Mater. Sol. Cells 94, 2328 (2010) , doi: 10.1016/j.solmat.2010.08.002
  • [15] N. Sun, G. Fang, P. Qin, Q. Zheng, M. Wang, X. Fan, F. Cheng, J. Wan, X. Zhao, Sol. Energy Mater. Sol. Cells 94, 2328 (2010) , doi: 10.1016/j.solmat.2010.08.002
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p30kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.