Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 879-883

Article title

Nanostructure Features, Phase Relationships and Thermoelectric Properties of Melt-Spun and Spark-Plasma-Sintered Skutterudites

Content

Title variants

Languages of publication

EN

Abstracts

EN
Reduction of thermal conductivity remains a main approach relevant to enhancement of figure-of-merit of most thermoelectric materials. Melt spinning combined with spark plasma sintering appears to be a vital route towards fine-grain skutterudites with improved thermoelectric performance. However, upon high-temperature processing the Fe_{4-x}Co_{x}Sb_{12}-based skutterudites are prone to decompose into multiple phases, which deteriorate their thermoelectric performance. In this study we addressed the effects of combined melt spinning and spark plasma sintering on the phase composition and microstructural properties of filled Fe_{4-x}Co_{x}Sb_{12} as well as their influence on thermoelectric characteristics of these compounds. The crystallites of filled Fe_{4-x}Co_{x}Sb_{12} were effectively reduced to sizes below 100 nm upon melt spinning, but also severe decomposition with weakly preserved nominal phase was observed. Spark plasma sintering of melt spun skutterudites resulted in even further reduction of crystallites. Upon short annealing and sintering the n-type materials easily restored into single-phase filled CoSb₃ with nanoscale features preserved, while secondary phases of FeSb₂ and Sb remained in p-type compounds. Relatively high figure-of-merit ZT_{max} of 0.9 at T ≈ 400°C has been gained in nanostructured Yb_{x}Co₄Sb_{12}, however, no significant reduction of thermal conductivity was observed. Abundant impurities in p-type filled Fe_{4-x}Co_{x}Sb_{12} led to drastic drop in their ZT, which even further degraded upon thermal cycling.

Keywords

Contributors

author
  • Department of Semiconductor Electronics, Lviv Polytechnic National University, 12 S. Bandery Str., 79013 Lviv, Ukraine
  • Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
  • Department of Semiconductor Electronics, Lviv Polytechnic National University, 12 S. Bandery Str., 79013 Lviv, Ukraine
  • Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
  • Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
  • Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
  • Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
  • Fraunhofer-Institut für Physikalische Messtechnik IPM, Heidenhofstr. 8, 79110 Freiburg, Germany
author
  • Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France

References

  • [1] G.S. Nolas, D.T. Morelli, T.M. Tritt, Ann. Rev. Mater. Res. 29, 89 (1999) , doi: 10.1146/annurev.matsci.29.1.89
  • [2] C. Uher, in: Thermoelectrics Handbook: Macro to Nano, Eds. D.M. Rowe, Taylor & Francis Group, Boca Raton 2006, p. 34-1, doi: 10.1201/9781420038903.ch34
  • [3] E. Alleno, D. Bérardan, C. Godart, M. Puyet, B. Lenoir, R. Lackner, E. Bauer, L. Girard, D. Ravot, Physica B 383, 103 (2006) doi: 10.1016/j.physb.2006.03.068
  • [4] H. Li, X. Tang, Q. Zhang, C. Uher, Appl. Phys. Lett. 93, 252109 (2008) , doi: 10.1063/1.3054158
  • [5] G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, C. Uher, J. Mater. Chem. A 1, 12657 (2013) , doi: 10.1039/C3TA13024J
  • [6] Z. Chen, J. Yang, R. Liu, L. Xi, W. Zhang, J. Yang, J. Electron. Mater. 42, 2492 (2013) , doi: 10.1007/s11664-013-2594-z
  • [7] A. Sesselmann, G. Skomedal, H. Middleton, E. Müller, J. Electron. Mater. 45, 1397 (2016) , doi: 10.1007/s11664-015-4046-4
  • [8] Y. Tang, S. Chen, G.J. Snyder, J. Materiomics 1, 75 (2015) , doi: 10.1016/j.jmat.2015.03.008
  • [9] A. Grytsiv, P. Rogl, H. Michor, E. Bauer, G. Giester, J. Electron. Mater. 42, 2940 (2013) , doi: 10.1007/s11664-013-2679-8
  • [10] V. Raghavan, J. Phase Equilibria 22, 666 (2001) , doi: 10.1007/s11669-001-0033-y
  • [11] D. Bérardan, C. Godart, E. Alleno, E. Leroy, P. Rogl, J. Alloys Comp. 350, 30 (2003) , doi: 10.1016/S0925-8388(02)00968-4
  • [12] D. Bérardan, E. Alleno, C. Godart, O. Rouleau, J. Rodriguez-Carvajal, Mater. Res. Bull. 40, 537 (2005) , doi: 10.1016/j.materresbull.2004.10.023
  • [13] D. Bérardan, C. Godart, E. Alleno, St. Berger, E. Bauer, J. Alloys Comp. 351, 18 (2003) , doi: 10.1016/S0925-8388(02)01047-2
  • [14] Y. Tang, Y. Qiu, L. Xi, X. Shi, W. Zhang, L. Chen, S.-M. Tseng, S. Chen, G.J. Snyder, Energy Environ. Sci. 7, 812 (2014) , doi: 10.1039/C3EE43240H
  • [15] G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, P. Rogl, Acta Mater. 95, 201 (2015) , doi: 10.1016/j.actamat.2015.05.024

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n4p28kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.