Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Reduction of thermal conductivity remains a main approach relevant to enhancement of figure-of-merit of most thermoelectric materials. Melt spinning combined with spark plasma sintering appears to be a vital route towards fine-grain skutterudites with improved thermoelectric performance. However, upon high-temperature processing the Fe_{4-x}Co_{x}Sb_{12}-based skutterudites are prone to decompose into multiple phases, which deteriorate their thermoelectric performance. In this study we addressed the effects of combined melt spinning and spark plasma sintering on the phase composition and microstructural properties of filled Fe_{4-x}Co_{x}Sb_{12} as well as their influence on thermoelectric characteristics of these compounds. The crystallites of filled Fe_{4-x}Co_{x}Sb_{12} were effectively reduced to sizes below 100 nm upon melt spinning, but also severe decomposition with weakly preserved nominal phase was observed. Spark plasma sintering of melt spun skutterudites resulted in even further reduction of crystallites. Upon short annealing and sintering the n-type materials easily restored into single-phase filled CoSb₃ with nanoscale features preserved, while secondary phases of FeSb₂ and Sb remained in p-type compounds. Relatively high figure-of-merit ZT_{max} of 0.9 at T ≈ 400°C has been gained in nanostructured Yb_{x}Co₄Sb_{12}, however, no significant reduction of thermal conductivity was observed. Abundant impurities in p-type filled Fe_{4-x}Co_{x}Sb_{12} led to drastic drop in their ZT, which even further degraded upon thermal cycling.
Discipline
- 81.20.Ev: Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation
- 72.20.Pa: Thermoelectric and thermomagnetic effects
- 81.40.Gh: Other heat and thermomechanical treatments
- 72.15.Jf: Thermoelectric and thermomagnetic effects
- 66.70.Df: Metals, alloys, and semiconductors
- 81.16.-c: Methods of micro- and nanofabrication and processing(for femtosecond probing of semiconductor nanostructures, see 82.53.Mj in physical chemistry and chemical physics)
- 72.15.Eb: Electrical and thermal conduction in crystalline metals and alloys
Journal
Year
Volume
Issue
Pages
879-883
Physical description
Dates
published
2018-04
Contributors
author
- Department of Semiconductor Electronics, Lviv Polytechnic National University, 12 S. Bandery Str., 79013 Lviv, Ukraine
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
- Department of Semiconductor Electronics, Lviv Polytechnic National University, 12 S. Bandery Str., 79013 Lviv, Ukraine
author
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
author
- Fraunhofer-Institut für Physikalische Messtechnik IPM, Heidenhofstr. 8, 79110 Freiburg, Germany
author
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
References
- [1] G.S. Nolas, D.T. Morelli, T.M. Tritt, Ann. Rev. Mater. Res. 29, 89 (1999) , doi: 10.1146/annurev.matsci.29.1.89
- [2] C. Uher, in: Thermoelectrics Handbook: Macro to Nano, Eds. D.M. Rowe, Taylor & Francis Group, Boca Raton 2006, p. 34-1, doi: 10.1201/9781420038903.ch34
- [3] E. Alleno, D. Bérardan, C. Godart, M. Puyet, B. Lenoir, R. Lackner, E. Bauer, L. Girard, D. Ravot, Physica B 383, 103 (2006) doi: 10.1016/j.physb.2006.03.068
- [4] H. Li, X. Tang, Q. Zhang, C. Uher, Appl. Phys. Lett. 93, 252109 (2008) , doi: 10.1063/1.3054158
- [5] G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, C. Uher, J. Mater. Chem. A 1, 12657 (2013) , doi: 10.1039/C3TA13024J
- [6] Z. Chen, J. Yang, R. Liu, L. Xi, W. Zhang, J. Yang, J. Electron. Mater. 42, 2492 (2013) , doi: 10.1007/s11664-013-2594-z
- [7] A. Sesselmann, G. Skomedal, H. Middleton, E. Müller, J. Electron. Mater. 45, 1397 (2016) , doi: 10.1007/s11664-015-4046-4
- [8] Y. Tang, S. Chen, G.J. Snyder, J. Materiomics 1, 75 (2015) , doi: 10.1016/j.jmat.2015.03.008
- [9] A. Grytsiv, P. Rogl, H. Michor, E. Bauer, G. Giester, J. Electron. Mater. 42, 2940 (2013) , doi: 10.1007/s11664-013-2679-8
- [10] V. Raghavan, J. Phase Equilibria 22, 666 (2001) , doi: 10.1007/s11669-001-0033-y
- [11] D. Bérardan, C. Godart, E. Alleno, E. Leroy, P. Rogl, J. Alloys Comp. 350, 30 (2003) , doi: 10.1016/S0925-8388(02)00968-4
- [12] D. Bérardan, E. Alleno, C. Godart, O. Rouleau, J. Rodriguez-Carvajal, Mater. Res. Bull. 40, 537 (2005) , doi: 10.1016/j.materresbull.2004.10.023
- [13] D. Bérardan, C. Godart, E. Alleno, St. Berger, E. Bauer, J. Alloys Comp. 351, 18 (2003) , doi: 10.1016/S0925-8388(02)01047-2
- [14] Y. Tang, Y. Qiu, L. Xi, X. Shi, W. Zhang, L. Chen, S.-M. Tseng, S. Chen, G.J. Snyder, Energy Environ. Sci. 7, 812 (2014) , doi: 10.1039/C3EE43240H
- [15] G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, P. Rogl, Acta Mater. 95, 201 (2015) , doi: 10.1016/j.actamat.2015.05.024
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p28kz