Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 789-793

Article title

Presence of Oxygen in Ti-Al-C MAX Phases-Based Materials and their Stability in Oxidizing Environment at Elevated Temperatures

Content

Title variants

Languages of publication

EN

Abstracts

EN
The Ti₃AlC₂-, (Ti,Nb)₃AlC₂- and Ti₂AlC-based materials turned out to be more resistant than Crofer JDA steel in oxidizing atmosphere as 1000 h long tests at 600°C have shown. But the amounts of oxygen absorbed by the materials during testing were different. The Ti₂AlC-based material demonstrated the lowest oxygen uptake, (Ti,Nb)₃AlC₂-based absorbed a somewhat higher amount and the highest amount was absorbed by Ti₃AlC₂-based material. Scanning electron microscopy and the Auger study witnessed that amounts of oxygen in the MAX phases before the exposure in air were as well different: the approximate stoichiometries of the matrix phases of materials were Ti_{3.1-3.2}AlC_{2-2.2}, Ti_{1.9-4}Nb_{0.06-0.1}AlC_{1.6-2.2}O_{0.1-1.2} and Ti_{2.3-3.6}AlC_{1-1.9}O_{0.2-0.6}, respectively. The higher amount of oxygen present in the MAX phase structures may be the reason for higher resistance to oxidation during long-term heating in air at elevated temperature. The studied materials demonstrated high stabilities in hydrogen atmosphere as well. The bending strength of the Ti₃AlC₂- and (Ti,Nb)₃AlC₂-based materials after keeping at 600°C in air and hydrogen increased by 10-15%, but the highest absolute value of bending strength before and after being kept in air and hydrogen demonstrated the Ti₂AlC-based material (about 590 MPa).

Year

Volume

133

Issue

4

Pages

789-793

Physical description

Dates

published
2018-04

Contributors

author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine
author
  • Karpenko Physical-Mechanical Institute of the National Academy of Sciences of Ukraine, 5, Naukova Str. Lviv, 79060, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine
author
  • Karpenko Physical-Mechanical Institute of the National Academy of Sciences of Ukraine, 5, Naukova Str. Lviv, 79060, Ukraine
author
  • Université de Poitiers, CNRS/Laboratoire PHYMAT, UMR 6630 CNRS Université de Poitiers SP2MI, BP 30179, F-86962 Chasseneuil Futuroscope Cedex, France
author
  • Université de Poitiers, CNRS/Laboratoire PHYMAT, UMR 6630 CNRS Université de Poitiers SP2MI, BP 30179, F-86962 Chasseneuil Futuroscope Cedex, France
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine
author
  • The Institute of Advanced Manufacturing Technology, Wroclawska 37A, 30-011 Krakow, Poland
author
  • Karpenko Physical-Mechanical Institute of the National Academy of Sciences of Ukraine, 5, Naukova Str. Lviv, 79060, Ukraine
author
  • The Institute of Advanced Manufacturing Technology, Wroclawska 37A, 30-011 Krakow, Poland
author
  • The Institute of Advanced Manufacturing Technology, Wroclawska 37A, 30-011 Krakow, Poland
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine
author
  • EDL "Proton 21", 48a, Chernovola Str., Kiev's region 08132, Vishnevoe, Ukraine
author
  • EDL "Proton 21", 48a, Chernovola Str., Kiev's region 08132, Vishnevoe, Ukraine
author
  • Lviv Polytechnic National University, 12 Bandera Str., Lviv, 79013, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., Kiev, 04074, Ukraine

References

  • [1] M. Barsoum, Prog. Solid State Chem. 28, 201 (2000), doi: 10.1016/S0079-6786(00)00006-6
  • [2] M. Barsoum, D. Brodkin, T. El-Raghy, Scr. Met. Mater. 36, 535 (1997), doi: 10.1016/S1359-6462(96)00418-6
  • [3] T. El-Raghy, A. Zavaliangos, M. Barsoum, S. Kalidindi, J. Am. Ceram. Soc. 80, 513 (1997), doi: 10.1111/j.1151-2916.1997.tb02861.x
  • [4] B. Kooi, R. Poppen, N. Carvalho, J. de Hosson, M. Barsoum, Acta Mater. 51, 2859 (2003), doi: 10.1016/S1359-6454(03)00091-0
  • [5] J. Molina-Aldareguia, J. Emmerlich, J.-P. Palmquist, U. Jansson, L. Hultman,Scr. Mater. 49, 155 (2003), doi: 10.1016/S1359-6462(03)00214-8
  • [6] T. Prikhna, S. Dub, A. Starostina, M. Karpets, T. Cabiosh, P. Chartier, J. Superhard Mater. 34, 102 (2012), doi: 10.3103/S1063457612020049
  • [7] X. Wang, Y. Zhou, J. Mater. Sci. Technol. 26, 385 (2010), doi: 10.1016/S1005-0302(10)60064-3
  • [8] Z. Sun, Int. Mater. Rev. 56, 143 (2011), doi: 10.1179/1743280410Y.0000000001
  • [9] K. Whittle, M. Blackford, R. Aughterson, S. Moricca, G.R. Lumpkin, D.P. Riley, N.J. Zaluzec, Acta Mater. 58, 4362 (2010), doi: 10.1016/j.actamat.2010.04.029
  • [10] X. Wang, Y. Zhou, Corros. Sci. 45, 891 (2003), doi: 10.1016/S0010-938X(02)00177-4
  • [11] G. Song, W. Sloof, S. Li, S. Van der Zwaag, in: Proc. First Int. Conf. on Self Healing Materials, Eds.: S. van der Zwaag, E. Brinkman,, Noordwijk aan Zee, The Netherlands 2007, p. 96
  • [12] T. Prikhna, T. Cabiosh, W. Gawalek, O. Ostash, D. Lizkendorf, S. Dub, M. Loshak, V. Sverdun, P. Chartier, T. Basyuk, V. Moshchil, A. Kozyrev, M. Karpets, V. Kovylaev, A. Starostina, D. Turkevich, Adv. Sci. Technol. 89, 123 (2014), doi: 10.4028/www.scientific.net/AST.89.123
  • [13] T. Prikhna, O. Ostash, T. Basyuk, A. Ivasyshyn, V. Sverdun, M. Loshak, S. Dub, V. Podgurska, V. Moshchil, T. Cabioc'h, P. Chartier, M. Karpets, V. Kovylaev, O. Starostina, A. Kozyrev, Solid State Phenom. 230, 140 (2015), doi: 10.4028/www.scientific.net/SSP.230.140
  • [14] T. Prikhna, A. Starostina, I. Petrusha, S. Ivakhnenko, A. Borimskii, Yu. Filatov, M. Loshak, M. Serga, V. Tkach, V. Turkevich, V. Sverdun, S. Klimenko, D. Turkevich, S. Dub, T. Basyuk, M. Karpets, V. Moshchil', A. Kozyrev, G. Il'nitskaya, V. Kovylyaev, D. Lizkendorf, T. Cabiosh, P. Chartier, J. Superhard Mater. 36, 9 (2014), doi: 10.3103/S106345761401002X
  • [15] T. Cabioch, P. Eklund, V. Mauchamp, M. Jaouen, M. Barsoum, J. Europ. Ceram. Soc. 33, 397 (2013), doi: 10.1016/j.jeurceramsoc.2012.10.008
  • [16] T. Cabioc'h, P. Eklund, V. Mauchamp, M. Jaouen, J. Europ. Ceram. Soc. 32, 1803 (2012), doi: 10.1016/j.jeurceramsoc.2011.12.011
  • [17] J. Rosen, P.O.Å. Persson, M. Ionescu, A. Kondyurin, D.R. McKenzie, M.M.M. Bilek, Appl. Phys. Lett. 92, 064102 (2008), doi: 10.1063/1.2838456
  • [18] T. Liao, J. Wang, M. Li, Y. Zhou, J. Mater. Res. 24, 3190 (2009), doi: 10.1557/jmr.2009.0377
  • [19] M. Dahlqvist, J. Rosen, Defect formation and oxygen incorporation in Ti₂AlC, V₂AlC, and Cr₂AlC from first principles calculations, in manuscript
  • [20] A. Mockutė, Synthesis and Characterization of New MAX Phase Alloys, LiU-Tryck, Linköping 2014
  • [21] X. Wang, Y. Zhou, Acta Mater. 50, 3141 , (2002), doi: 10.1016/S1359-6454(02)00117-9
  • [22] A. Zhou, C. Wang, Y. Huang, Mater. Sci. Eng. A 352, 333 (2003), doi: 10.1016/S0921-5093(02)00937-1
  • [23] S. Fontana, R. Amendola, S. Chevalier, J. Power Sources 171, 652 (2007), doi: 10.1016/j.jpowsour.2007.06.255

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n4p08kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.