PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 781-784
Article title

Modelling of Intrinsic Defects in CaYAl₃O₇

Content
Title variants
Languages of publication
EN
Abstracts
EN
CaYAl₃O₇ presents a challenge for computer modelling techniques because of its site-occupancy disorder related to the Ca/Y shared site. Supercells were built to reproduce experimental results which have the best agreement and lowest lattice energy. The potential parameters were obtained by empirical fitting, and reproduced the structure to within 1.09%. Results obtained by supercell and the Mott-Littleton methods were compared. Both methods predict oxygen Frenkel defects are likely to be formed.
Keywords
EN
Year
Volume
133
Issue
4
Pages
781-784
Physical description
Dates
published
2018-04
References
  • [1] H. Zhang, C.-N. Xu, N. Terasaki, H. Yamada, Electrochem. Solid-State Lett. 14, J76 (2011) , doi: 10.1149/2.012111esl
  • [2] N. Kodama, Y. Tanii, M. Yamaga, J. Lumin. 87-89, 1076 (2000) , doi: 10.1016/S0022-2313(99)00543-8
  • [3] V. Singh, V.K. Rai, K. Al-Shamery, J. Nordmann, M. Haase, J. Lumin. 131, 2679 (2011) , doi: 10.1016/j.jlumin.2011.06.055
  • [4] H. Zhang, H. Yamada, N. Terasaki, C.-N. Xu, J. Electrochem. Soc. 155, J128 (2008) , doi: 10.1149/1.2890856
  • [5] S. Unithrattil, K.H. Lee, W.J. Chung, W. Bin Im, J. Lumin. 152, 176 (2014) , doi: 10.1016/j.jlumin.2013.11.039
  • [6] H. Xiumei, Y. Xin, Q. Jianquan, Q. Xiwei, W. Xiaoqiang, L. Mingya, S. Xudong, W. Chen, J. Nanosci. Nanotechnol. 16, 730 (2016) , doi: 10.1166/jnn.2016.10805
  • [7] V. Singh, S. Watanabe, T.K.G. Rao, H.-Y. Kwak, J. Fluoresc. 21, 313 (2011) , doi: 10.1007/s10895-010-0718-x
  • [8] P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, T. Schumm, J. Phys. Condens. Matter 26, 105402 (2014) , doi: 10.1088/0953-8984/26/10/105402
  • [9] M.V.S. Rezende, D.J. Santos, R.A. Jackson, M.E.G. Valerio, Z.S. Macedo, J. Solid State Chem. 238, 210 (2016) , doi: 10.1016/j.jssc.2016.03.029
  • [10] J.B. Amaral, M.A. Couto dos Santos, M.E.G. Valerio, R.A. Jackson, Appl. Phys. B 81, 841 (2005) , doi: 10.1007/s00340-005-1933-z
  • [11] A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 1994
  • [12] G.M. Kuz'micheva, B.V. Mukhin, V.B. Rybakov, A.L. Denisov, E.V. Zharikov, V.A. Smirnov, Zh. Neorg. Khim. 40, 562 (1995)
  • [13] J.D. Gale, JCS Faraday Trans. 93, 629 (1997) , doi: 10.1039/A606455H
  • [14] R.A. Jackson, J.E. Huntington, R.G.J. Ball, J. Mater. Chem. 1, 1079 (1991) , doi: 10.1039/JM9910101079
  • [15] N.F. Mott, M.J. Littleton, Trans. Faraday Soc. 34, 485 (1938) , doi: 10.1039/TF9383400485
  • [16] M.V. dos S. Rezende, M.E.G. Valerio, R.A. Jackson, Opt. Mater. 34, 109 (2011) , doi: 10.1016/j.optmat.2011.07.025
  • [17] S.T. Murphy, H. Lu, R.W. Grimes, J. Phys. Chem. Solids 71, 735 (2010) , doi: 10.1016/j.jpcs.2010.01.011
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p06kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.