Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
CaYAl₃O₇ presents a challenge for computer modelling techniques because of its site-occupancy disorder related to the Ca/Y shared site. Supercells were built to reproduce experimental results which have the best agreement and lowest lattice energy. The potential parameters were obtained by empirical fitting, and reproduced the structure to within 1.09%. Results obtained by supercell and the Mott-Littleton methods were compared. Both methods predict oxygen Frenkel defects are likely to be formed.
Discipline
- 61.43.Bn: Structural modeling: serial-addition models, computer simulation
- 34.20.Cf: Interatomic potentials and forces
- 61.72.-y: Defects and impurities in crystals; microstructure(for radiation induced defects, see 61.80.-x; for defects in surfaces, interfaces, and thin films, see 68.35.Dv and 68.55.Ln; see also 85.40.Ry Impurity doping, diffusion, and ion implantation technology; for effects of crystal defects and doping on superconducting transition temperature, see 74.62.Dh)
Journal
Year
Volume
Issue
Pages
781-784
Physical description
Dates
published
2018-04
Contributors
author
- Physics Department, Federal University of Sergipe, 49,100-000 Săo Cristovăo, SE, Brazil
author
- School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, Staffordshire, United Kingdom
author
- Physics Department, Federal University of Sergipe, 49,100-000 Săo Cristovăo, SE, Brazil
References
- [1] H. Zhang, C.-N. Xu, N. Terasaki, H. Yamada, Electrochem. Solid-State Lett. 14, J76 (2011) , doi: 10.1149/2.012111esl
- [2] N. Kodama, Y. Tanii, M. Yamaga, J. Lumin. 87-89, 1076 (2000) , doi: 10.1016/S0022-2313(99)00543-8
- [3] V. Singh, V.K. Rai, K. Al-Shamery, J. Nordmann, M. Haase, J. Lumin. 131, 2679 (2011) , doi: 10.1016/j.jlumin.2011.06.055
- [4] H. Zhang, H. Yamada, N. Terasaki, C.-N. Xu, J. Electrochem. Soc. 155, J128 (2008) , doi: 10.1149/1.2890856
- [5] S. Unithrattil, K.H. Lee, W.J. Chung, W. Bin Im, J. Lumin. 152, 176 (2014) , doi: 10.1016/j.jlumin.2013.11.039
- [6] H. Xiumei, Y. Xin, Q. Jianquan, Q. Xiwei, W. Xiaoqiang, L. Mingya, S. Xudong, W. Chen, J. Nanosci. Nanotechnol. 16, 730 (2016) , doi: 10.1166/jnn.2016.10805
- [7] V. Singh, S. Watanabe, T.K.G. Rao, H.-Y. Kwak, J. Fluoresc. 21, 313 (2011) , doi: 10.1007/s10895-010-0718-x
- [8] P. Dessovic, P. Mohn, R.A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, T. Schumm, J. Phys. Condens. Matter 26, 105402 (2014) , doi: 10.1088/0953-8984/26/10/105402
- [9] M.V.S. Rezende, D.J. Santos, R.A. Jackson, M.E.G. Valerio, Z.S. Macedo, J. Solid State Chem. 238, 210 (2016) , doi: 10.1016/j.jssc.2016.03.029
- [10] J.B. Amaral, M.A. Couto dos Santos, M.E.G. Valerio, R.A. Jackson, Appl. Phys. B 81, 841 (2005) , doi: 10.1007/s00340-005-1933-z
- [11] A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 1994
- [12] G.M. Kuz'micheva, B.V. Mukhin, V.B. Rybakov, A.L. Denisov, E.V. Zharikov, V.A. Smirnov, Zh. Neorg. Khim. 40, 562 (1995)
- [13] J.D. Gale, JCS Faraday Trans. 93, 629 (1997) , doi: 10.1039/A606455H
- [14] R.A. Jackson, J.E. Huntington, R.G.J. Ball, J. Mater. Chem. 1, 1079 (1991) , doi: 10.1039/JM9910101079
- [15] N.F. Mott, M.J. Littleton, Trans. Faraday Soc. 34, 485 (1938) , doi: 10.1039/TF9383400485
- [16] M.V. dos S. Rezende, M.E.G. Valerio, R.A. Jackson, Opt. Mater. 34, 109 (2011) , doi: 10.1016/j.optmat.2011.07.025
- [17] S.T. Murphy, H. Lu, R.W. Grimes, J. Phys. Chem. Solids 71, 735 (2010) , doi: 10.1016/j.jpcs.2010.01.011
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n4p06kz