PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 745-747
Article title

Active LR Integrator Circuit for Drift-Free Magnetoelastic Transducer

Content
Title variants
Languages of publication
EN
Abstracts
EN
Current integrator systems usually use active RC integrator circuits. Crucial dificulty associated with this analogue system is the integrator drift. The following paper presents the idea of the active integrator circuit based on inductive and resistive components. This concept allows to eliminate the time drift of the circuit, which is undesired phenomenon resulting from capacitive components working in the traditional negative feedback loop. The SPICE simulations were performed to validate the presented idea. Then, prototype circuit with discrete components was tested. Inductors were based on nanocrystalline and air cores. The developed solution was tested as magnetoelastic sensors transducer, to confirm the ability for long-term, continuous, drift-free, integrator circuit operation. The results were compared with traditional, RC circuit with automatic drift compensation.
Keywords
EN
Contributors
author
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Andrzeja Boboli 8, 02-525 Warsaw, Poland
author
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Andrzeja Boboli 8, 02-525 Warsaw, Poland
author
  • Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02-486 Warsaw, Poland
References
  • [1] W. Fuller Brown Jr., Journal of Applied Physics 36, 994 (1965), doi: 10.1063/1.1714293
  • [2] P. Svec, J. Zigo, M. Nowicki, in: Mechatronics - Ideas for Industrial Applications, Eds.: J. Awrejcewicz, R. Szewczyk, M. Trojnacki, M. Kaliczyńska, Springer, Cham 2015, p. 381, doi: 10.1007/978-3-319-10990-9_36
  • [3] A. Bieńkowski, R. Szewczyk, J. Salach, Acta Phys. Pol. A 118, 1008 (2010), doi: 10.12693/APhysPolA.118.1008
  • [4] D. Zhang, X. Yan, E. Zhang, S. Pan, Rev. Sci. Instr. 87, 105119 (2016), doi: 10.1063/1.4964806
  • [5] H.P. Gavin, R. Morales, K. Reilly, Rev. Sci. Instr. 69, 2171 (1998), doi: 10.1063/1.1148918
  • [6] P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and design of analog integrated circuit, Wiley, New York 2009
  • [7] Z. Pólik, M. Kuczmann, J. Optoelectron. Adv. Mater. 10, 1861 (2008)
  • [8] E. M. Ga, D. Son, J. G. Bak, S. G. Lee, J. Magn. 8, 160 (2003), doi: 10.4283/JMAG.2003.8.4.160
  • [9] N. Storey, Electronics: a system approach, Pearson Higher Education, Harlow 2013
  • [10] P. Gazda, M. Nowicki, M. Kachniarz, M Szudarek, R Szewczyk, in: Automation 2017 Innovations in Automation Robotics and Measurement Techniques, Eds.: R. Szewczyk, C. Zieliński, M. Kaliczyńska, Springer, Cham 2017, p. 519, doi: 10.1007/978-3-319-54042-9_51
  • [11] T. Charubin, M. Urbański, M. Nowicki, in: Recent Advances in Systems, Control and Information Technology, Eds.: R. Szewczyk, M. Kaliczyńska, Springer, Cham 2016, p. 593, doi: 10.1007/978-3-319-29357-8_72
  • [12] M. Kachniarz, D. Jackiewicz, M. Nowicki, A. Bieńkowski, R. Szewczyk, W. Winiarski, in: Mechatronics - Ideas for Industrial Application, Eds.: J. Awrejcewicz, R. Szewczyk, M. Trojnacki, M. Kaliczyńska, Springer, Cham 2016, p. 307, doi: 10.1007/978-3-319-10990-9_28
  • [13] D. Jackiewicz, R. Szewczyk, J. Salach, in: Mechatronics System and Materials V, Eds.: Z. Gosiewski, Z. Kulesza, Solid State Phenomena, Durnten 2013, p. 466, doi: 10.4028/www.scientific.net/SSP.199.466
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p125kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.