Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 728-730

Article title

Optimization of fMRI Analysis of Speech Areas in Pre- and Postoperative Diagnostics

Content

Title variants

Languages of publication

EN

Abstracts

EN
Functional magnetic resonance imaging (fMRI) was used to characterize relevant functional areas adjacent to the tumor what has important implications for surgical intervention. The aim of our study was to evaluate the functional areas of Broca and Wernicke responsible for production and understanding the speech which are very important from the point of view patients quality life using different variants of analysis available in the SPM package. Brain activity imaging with FWE controlling seems to be more appropriate than this with un uncorrected thresholds in clinical diagnostic. However analysis in the SPM should be carried out with great care taking into consideration that results can be influenced by parameters used in statistical approaches.

Keywords

EN

Year

Volume

133

Issue

3

Pages

728-730

Physical description

Dates

published
2018-03

Contributors

author
  • Department of Medical Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
  • Department of Medical Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
  • Department of Medical Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
  • Institute of Computer Science, University of Silesia, Bedzinska 39, 41-200 Sosnowiec, Poland
  • Helimed Diagnostic Imaging Sp. z o.o., Laboratory of Magnetic Resonance Imaging, Panewnicka 65, 40-760 Katowice, Poland

References

  • [1] S. Ogawa, T.M. Lee, A.S. Nayak, P. Glynn, Magnetic Resonance in Medicine 14, 68 (1990)
  • [2] M. Tozakidou, H. Wenz, J. Reinhardt, E. Nennig, K. Riffel, M. Blatow, Ch. Stippich, Neuroimage: Clinical 2, 221 (2013), doi: 10.1016/j.nicl.2013.01.002
  • [3] S. Marion, European Association of Neuro Oncology Magazine 2.3, 123 (2012)
  • [4] T. Nichols, S. Hayasaka, Statistical methods in medical research 12, 419 (2003)
  • [5] M.A. Lindquist, A. Mejia, Psyhosom Med 77, 114 (2015), doi: 10.1097/PSY.0000000000000148
  • [6] M.A. Lindquist, Statistical Science 23, 439 (2008)
  • [7] J. W. Peirce, J. Neurosci. Methods 15, 162, 8 (2007)
  • [8] R. Cox, J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C. Holmes, J. Lancaster, D. Rex, S. Smith, J. Woodward, S. Strother, 10th Annual Meeting of the Organization for Human Brain Mapping (OHBM 2004) 2004 http://nifti.nimh.nih.gov/nifti-1/documentation/hbm_nifti_2004.pdf
  • [9] J. Crinion, J. Ashburner, A. Leff, M. Brett, C.Price, K. Friston, NeuroImage 37, 866 (2007), doi: 10.1016/j.neuroimage.2007.04.065
  • [10] J. Tamraz, Y. Comair. Atlas of Regional Anatomy of the Brain Using MRI: With Functional Correlations, Springer, 2005
  • [11] W. Orrison, Jr. Atlas funkcjonalny mózgu, PZWL, Warszawa 2010, (in Polish)
  • [12] Talairach.com, Talairach Client, Version 2.4.3 http://talairach.org/client.html
  • [13] T. White, D. O'Leary, V. Magnotta, S. Arndt, M. Flaum, N.C. Andreasen, NeuroImage 13, 577 (2001), doi: 10.1006/nimg.2000.0716
  • [14] I. Karpiel, Z. Drzazga, P. Mazgaj, P. Ulrych, A.Giec-Lorenc, Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol. 526, Eds.: M. Gzik, E. Tkacz Z. Paszenda E. Piętka, Springer 2016, p. 219, doi: 10.1007/978-3-319-47154-9_26
  • [15] S.M. Andersen, S.Z. Rapcsak, P.M. Beeson, NeuroImage 53, 78 (2010), doi: 10.1016/j.neuroimage.2010.06.003

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p120kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.