Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 701-703

Article title

Discrete Inverse Transformation for Eddy Current Tomography

Content

Title variants

Languages of publication

EN

Abstracts

EN
Paper presents results of a discrete inverse tomography transformation on exemplary results from eddy current tomography setup. Eddy current phenomena is highly non-linear and measurement results are ill-posed function of distribution of physical properties of the matter (mostly electrical conductivity and magnetic permeability). Thus the inverse transformation (reconstruction of objects shape) is based on an optimization algorithm in which objects model is described as a discrete array. With the usage of Finite Element Method (FEM) tomography measurement process is reconstructed and modelling results are compared with the measurement.

Keywords

Contributors

author
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Boboli 8, 02-525, Warsaw, Poland
author
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Boboli 8, 02-525, Warsaw, Poland
author
  • CSC - IT Center for Science, Keilaranta 14,FI-20101 Espoo, Finland
  • CSC - IT Center for Science, Keilaranta 14,FI-20101 Espoo, Finland
author
  • Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02-486, Warsaw, Poland
author
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Boboli 8, 02-525, Warsaw, Poland

References

  • [1] J. Salach, in: Advances in Intelligent Systems and Computing v. 317, Eds. J. Awrejcewicz, R. Szewczyk, M. Trojnacki, M. Kaliczyńska, Springer, Berlin 2015, p. 373, doi: 10.1007/978-3-319-10990-9_35
  • [2] D. Premel, A. Mohammad-Djafari, IIEEE T. Magn. 31, 2000 (1995), doi: 10.1109/20.376435
  • [2] F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, New York 1986, doi: 10.1137/1.9780898719284
  • [3] R. Szewczyk, J. Salach, J. Ruokolainen, P. Råback, K. Stefko, M. Nowicki in: Advances in Intelligent Systems and Computing, v. 352, Eds. R. Szewczyk, C. Zieliński, M. Kaliczyńska Springer, Berlin 2015, p. 219, doi: 10.1007/978-3-319-15835-8_24
  • [4] M. Soleimani, W.R.B. Lionheart, IEEE T. Med. Imaging, 25, 1521 (2006), doi: 10.1109/TMI.2006.884196
  • [5] M. Soleimani, W. Lionheart, A. Peyton, X. Ma in: Proceedings of the 3rd World Congress on Industrial Process Tomography, 2003, p. 252
  • [6] M. Soleimani, C. N. Mitchell, R. Banasiak, R. Wajman, A. Adler, Prog. Electromagn. Res. 90, 171 (2009), doi: 10.2528/pier09010202
  • [7] A. Bossavit, IEE Proc. A, Phys. Sci., Meas. Instr., Manag. Edu. 135, 493 (1988), doi: 10.1049/ip-a-1.1988.0077
  • [8] P. Nowak, R. Szewczyk, R. Ugodziński, P. Bazydło, in: Automation 2017 Innovations in Automation Robotics and Measurement Techniques, Eds. R. Szewczyk, C. Zieliński, M. Kaliczyńska, Springer, Berlin 2017, p. 481, doi: 10.1007/978-3-319-54042-9_46
  • [9] P. Nowak, R. Szewczyk, in: PROCEEDINGS of the 21st International Conference on Applied Physics of Condensed Matter APCOM 2015, Eds. J. Vajda, I. Jamnicky, Bratislava 2015, p. 198

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p111kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.