Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
In the present work the microstructure and thermomagnetic properties of Fe₈₀Zr₇Cr₆Nb₂Cu₁B₄ ribbon in the as-quenched state and after the accumulative annealing in the temperature range 600-800 K for 10 min were studied using Mössbauer spectroscopy and vibrating sample magnetometry. The second order phase transition from ferro- to paramagnetic state is observed. The Curie temperature T_{C} defined as inflection point on the magnetization versus temperature curve recorded on zero-field cooled mode equals 262.5 K for the as-quenched material. With increasing the annealing temperature increase of T_{C} is observed. The maximum value of the magnetic entropy change (-ΔS) observed in the vicinity of the Curie point is equal to 0.85 J/(kg K) for the alloy in the as-quenched state. Moreover, for the samples annealed up to 750 K for 10 min the low intensity maximum at about 190 K related to the supplementary magnetic phase is observed. The presence of this phase was confirmed as additional component visible on hyperfine field distributions of Mössbauer spectra.
Discipline
Journal
Year
Volume
Issue
Pages
676-679
Physical description
Dates
published
2018-03
Contributors
author
- Częstochowa University of Technology, Institute of Physics, Armii Krajowej 19, 42-200 Częstochowa, Poland
author
- Częstochowa University of Technology, Institute of Physics, Armii Krajowej 19, 42-200 Częstochowa, Poland
author
- Wrocław University of Science and Technology, Smoluchowskiego 25, 50-370 Wrocław, Poland
author
- Częstochowa University of Technology, Institute of Physics, Armii Krajowej 19, 42-200 Częstochowa, Poland
References
- [1] M.E. McHenry, M.A. Willard, D.E. Laughlin, Progress in Materials Science 44, 291 (1999), doi: 10.1016/S0079-6425(99)00002-X
- [2] J.M. Barandiaran, P. Gorria, I. Orue et al., J Phys Condens Matter 9, 5671 (1997), doi: 10.1088/0953-8984/9/26/014
- [3] W. Pilarczyk, Cryst. Res. Technol. 50, 700 (2015), doi: 10.1002/crat.201400438
- [4] R. Babilas. A. Radoń, P. Gębara, Acta. Phys. Pol. A 131, 726 (2017), doi: 10.12693/APhysPolA.131.726
- [5] L.F. Kiss, T. Kemeny, V. Franco, A. Conde, J. Alloys Comp. 622, 756 (2015), doi: 10.1016/j.jallcom.2014.10.127
- [6] K.A. Gschneidner, V.K. Pecharski, A.O. Tsokol, Rep.Prog. Phys. 68, 1479 (2005), doi: 10.1088/0034-4885/68/6/R04
- [7] R. A. Brand, Phys. Res. B28, 398 (1987), doi: 10.1016/0168-583X(87)90183-2
- [8] V.K. Pecharski, K. A. Gschneidner, J. Mag. Mag.Mater., 200, 46 (1999), doi: 10.1016/S0304-8853(99)00397-2
- [9] A. Łukiewska, Nukleonika 62, 135 (2017), doi: 10.1515/nuka-2017-0019
- [10] J. Olszewski, Hyperfine Interactions. 131, 83 (2000), doi: 10.1023/A:1010908521903
- [11] V. Chaudhary, R.V. Ramanujan, IEEE Magn. Lett. 6 (2015), doi: 10.1109/LMAG.2015.2449259
- [12] X.C. Zhong, H. C. Tian, S. S. Wang, Z. W. Liu, Z. G. Zheng, D. C. Zeng, J. Alloys Comp. 633, 188 (2015), doi: 10.1016/j.jallcom.2015.02.037
- [13] J. Świerczek, J. Mag. Mag. Mater. 322, 2696 (2010), doi: 10.1016/j.jmmm.2010.04.010
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p104kz