Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 673-675
Article title

Electronic Structure of Sm(Ni_{1-x}Co_{x})₃ Alloys - XPS and ab initio Study

Title variants
Languages of publication
The band structure investigations for Sm(Ni_{1-x}Co_{x})₃ alloys by means of X-ray photoelectron spectroscopy (XPS) and an ab initio density functional theory (DFT) calculations are presented. The aim was to determine an effect of Ni/Co substitution on the electronic structure of the alloys. Investigations have shown that the Ni/Co substitution results in a reconstruction of the valence band (VB), especially the intensity near the Fermi level decreases with Co content. An ab initio simulated XPS VB spectra agree qualitatively with experimental ones with the exception of the Sm-4f sub-spectra where the multiplet decomposition is observed. Calculations shown that variation of magnetization in Sm(Ni_{1-x}Co_{x})₃ is driven mainly by the Ni/Co-3d and Sm-5d states polarization and increases linearly with rising Co content.
Physical description
  • [1] T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J-Y Piquemal, G. Viau, Appl. Phys. Lett. 91, 172501 (2007), doi: 10.1063/1.2800786
  • [2] U.S. Department of Energy, Critical Materials Strategy, 2010
  • [3] E.M.T. Velu, D.N. Lambeth, J. Appl. Phys. 69, 5175 (1991), doi: 10.1063/1.348118
  • [4] E.P Wohlfarth, K Buschow, Ferromagnetic Materials, Vol. 4, Elsevier, North-Holland, Amsterdam 1988, p. 131
  • [5] M. Seifert, V. Neu, L. Schultz, Appl. Phys. Lett. 91, 022501 (2009), doi: 10.1063/1.3068503
  • [6] K. Nouri, M. Jemmali, S. Walha, J. Alloy Compd. 672, 440 (2016), doi: 10.1016/j.jallcom.2016.02.142
  • [7] M. Sikora, D. Blachliński, K. Ociepka, A. Bajorek, K. Prusik, G. Chełkowska, Acta Phys. Pol. A 133, 486 (2018)., doi: 10.12693/APhysPolA.133.486
  • [8] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002), doi: 10.1016/S0010-4655(02)00206-0
  • [9] D. Singh, Plane Waves, Pseudopotentials, and the APW Method, Kluwer Academic Publishers, Dordrecht 1994
  • [10] J.P. Perdew,A. Ruzsinszky, Ga.I. Csonka, O. A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008), doi: 10.1103/PhysRevLett.100.136406
  • [11] V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997), doi: 10.1088/0953-8984/9/4/002
  • [12] A. Dutta, P.K. Mukhopadhyay, T.P. Sinha, S. Shannigrahi, A.K. Himanshu, P. Sen, S.K. Bandyopadhyay, Mater. Chem. Phys. 179, 55 (2016), doi: 10.1016/j.matvhemphys.2016.05.009
  • [13] J.J. Yeh, I. Lindau, Atom. Data Nucl. Data 32, (1985)
  • [14] N. Lu, X. Song, J. Zhang, Nanotech. 21, 115708 (2010), doi: 10.1088/0957-4484/21/11/115708
  • [15] I.Yu. Gaidukova, S.A. Granovsky, A.S. Markosyan, V.E. Rodimin, J. Magn. Magn. Mater. 301, 124 (2006), doi: 10.1016/j/jmmm.2005.06.025
  • [16] Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology: New series. Geophysics and space research, Springer 1982
  • [17] S. Lebègue, A. Svane, M.I. Katsnelson, A.I. Lichtenstein, O. Eriksen, Phys. Rev. B 74, 045114 (2016), doi: 10.1103/PhysRevB.74.045114
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.