As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
The (110) oriented Nb-Fe multilayers (MLs) with constant Fe and variable Nb sublayer thicknesses were prepared at room temperature using UHV magnetron sputtering. The artificial periodicity was revealed by intense satellite peaks in the low- and high-angle X-ray diffraction patterns. Magnetic hysteresis loop measurements at 5 K revealed antiferromagnetic (AF) exchange coupling of the Fe sublayers for Nb spacer thickness of about 3 monolayers. The corresponding AF coupling energy is equal to about -1.36 mJ/m². The Nb spacer thickness corresponding to the position of the AF peak is in good agreement with ab-initio calculations within localized spin density approximations of exchange-correlation potential.
[4] S. Baltensperger, J. S. Helman, Appl. Phys. Lett. 57, 2954 (1990), doi: 10.1063/1.103737
[5] P. Bruno, Europhys. Lett. 23, 615 (1993), doi: 10.1209/0295-5075/23/8/013
[6] M. van Schilfgaarde, F. Herman, S.S.P. Parkin, J. Kudrnovský, Phys. Rev. Lett. 74, 4063 (1995), doi: 10.1103/PhysRevLett.74.4063
[7] Th. Mühge, N. N. Garif'yanov, Yu. V. Goryunov, G. G. Khaliullin, L. R. Tagirov, K. Westerholt, I. A. Garifullin, H. Zabel, Phys. Rev. Lett. 77, 1857 (1996), doi: 10.1103/PhysRevLett.77.1857
[8] J.E. Mattson, C.H. Sowers, A. Berger, S.D. Bader, Phys. Rev. Lett. 68, 3252 (1992), doi: 10.1103/PhysRevLett.68.3252
[9] Ch. Rehm, F. Klose, D. Nagengast, H. Maletta, A.Weidinger, Europhys. Lett. 38, 61 (1997), doi: 10.1209/epl/i1997-00535-4
[10] F. Klose, Ch. Rehm, D. Nagengast, H. Maletta, A. Weidinger, Phys. Rev. Lett. 78, 1150 (1997), doi: 10.1103/PhysRevLett.78.1150
[11] L. Smardz, K. Le Dang, H. Niedoba, K. Chrzumnicka, J. Magn. Magn. Mater. 140-144, 569 (1995), doi: 10.1016/0304-8853(94)01011-0
[12] L. Smardz, Sol. State Com. 112, 693 (1999), doi: 10.1016/S0038-1098(99)00426-3
[13] L. Smardz, J. Alloys Comp. 395, 17 (2005), doi: 10.1016/j.jallcom.2004.11.027
[14] L. Smardz, K. Smardz, H. Niedoba, J. Magn. Magn. Mater. 220, 175 (2000), doi: 10.1016/S0304-8853(00)00457-1
[15] J. Skoryna, A. Marczyńska, M. Lewandowski, L. Smardz, J. Alloys Comp. 645, 280 (2015), doi: 10.1016/j.jallcom.2014.12.238
[16] J. Skoryna, M. Wachowiak, A. Marczyńska, A. Rogowska, Ł. Majchrzycki, W. Koczorowski, R. Czajka, L. Smardz, Surf. Coat. Techn. 303, 119 (2016), doi: 10.1016/j.surfcoat.2016.03.030
[17] J. Skoryna, S. Pacanowski, A. Marczyńska, M. Werwiński, Ł. Majchrzycki, R. Czajka, L. Smardz, Surf. Coat. Techn. 303, 125 (2016), doi: 10.1016/j.surfcoat.2016.03.030
[18] L. Smardz, M. Nowak, M. Jurczyk, Int. J. of Hydrogen Energy 37, 3659 (2012), doi: 10.1016/j.ijhydene.2011.04.039
[19] L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, I. Okońska, Renewable Energy 33, 201 (2008), doi: 10.1016/j.renene.2007.05.006
[20] K. Smardz, L. Smardz, I. Okonska, M. Nowak, M. Jurczyk, Int. J. Hydrogen Energy 33, 387 (2008), doi: 10.1016/j.ijhydene.2007.07.032
[21] G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996), doi: 10.1103/PhysRevB.54.11169
[22] M. Pugaczowa-Michalska, J. Kaczkowski, Com. Mat. Science 126, 407 (2017), doi: 10.1016/j.commatsci.2016.10.014
[23] A. Marczyńska, J. Skoryna, B. Szymański, L. Smardz, Acta Phys. Pol. A 127, 552 (2015), doi: 10.12693/AphysPolA.127.552
[24] L. Smardz, K. Smardz, H. Niedoba, phys. stat. sol. (b) 243, 227 (2006), doi: 10.1002/pssb.200690002
[25] L. Smardz, K. Smardz, Mat. Sci. (Poland) 24, 821 (2006)
[26] A. Marczyńska, J. Skoryna, L. Smardz, Acta Phys. Pol. A 126, 1315 (2014), doi: 10.12693/APhysPolA.126.1315
[27] Nitya Nath Shukla, R. Prasad, Phys. Rev. B 70, 014420 (2004), doi: 10.1103/PhysRevB.70.014420