Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 601-604

Article title

Exchange Coupling Effects in Naturally Oxidised Ultrathin Iron Film

Content

Title variants

Languages of publication

EN

Abstracts

EN
Oxidation process of Fe films under atmospheric conditions is depth limited such that an oxide covering layer with a well-defined thickness is formed by which the underlying metal is prevented from further oxidation. Iron thin film with an initial thickness d_{i}=4 nm was deposited onto 1.6 nm - V(110) buffer layer using UHV magnetron sputtering. The planar growth of Fe oxides was revealed by atomic force microscopy. X-ray photoelectron spectroscopy studies performed after 250 days of oxidation revealed formation of a hematite (α-Fe₂O₃) ultrathin film on the metallic rest of iron. Furthermore, low temperature magnetic measurements of the oxidised Fe ultrathin film revealed an exchange anisotropy which is imposed to the metallic rest. As a result, we have observed at low temperatures a shift and broadening of the hysteresis loops due to the exchange interaction at the metal-oxide interface.

Keywords

EN

Contributors

  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • Faculty of Technical Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • Faculty of Technical Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland
author
  • Faculty of Technical Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • Faculty of Technical Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland
author
  • Faculty of Technical Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland

References

  • [1] L. Smardz, U. Köbler, W. Zinn, J. Appl. Phys. 71, 5199 (1992), doi: 10.1063/1.351378
  • [2] L. Smardz, U. Köbler, W. Zinn, Vacuum 42, 283 (1991), doi: 10.1016/0042-207X(91)90038-K
  • [3] J.D. Baran, H. Grönbeck, A. Hellman, Phys. Rev. Lett. 112, 146103 (2014), doi: 10.1103/PhysRevLett.112.146103
  • [4] R. Cornell, U. Schwertmann, The Iron Oxides, Wiley & Sons, New York 1997
  • [5] M. Monti, B. Santos, A. Mascaraque, O. Rodriguez de la Fuente, M.A. Niño, T.O. Menteţ, A. Locatelli, K.F. McCarty, J. F. Marco and J. de la Figuera, J. Phys. Chem. C 116, 11539 (2012), doi: 10.1021/jp300702d
  • [6] A. Marczyńska, J. Skoryna, M. Lewandowski, L. Smardz, Acta Phys. Pol. A 127, 549 (2015), doi: 10.12693/APhysPolA.127.549
  • [7] W.H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962)
  • [8] A. P. Malozemoff, J. Appl. Phys. 63, 3874 (1988)
  • [9] L. Smardz, phys. stat. sol. (a) 181, R7 (2000), doi: 10.1002/1521-396X(200009)181:1<R7::AID-PSSA99997>3.0.CO;2-F
  • [10] L. Smardz, J. Magn. Magn. Mater. 240, 273 (2002), doi: 10.1016/S0304-8853(01)00821-6
  • [11] L. Smardz, K. Le Dang, H. Niedoba, K. Chrzumnicka, J. Magn. Magn. Mater. 140-144, 569 (1995), doi: 10.1016/0304-8853(94)01011-0
  • [12] L. Smardz, Sol. State Com. 112, 693 (1999), doi: 10.1016/S0038-1098(99)00426-3
  • [13] L. Smardz, J. Alloys Comp. 395, 17 (2005), doi: 10.1016/j.jallcom.2004.11.027
  • [14] L. Smardz, K. Smardz, H. Niedoba, J. Magn. Magn. Mater. 220, 175 (2000), doi: 10.1016/S0304-8853(00)00457-1
  • [15] J. Skoryna, A. Marczyńska, M. Lewandowski, L. Smardz, J. Alloys Comp. 645, 280 (2015), doi: 10.1016/j.jallcom.2014.12.238
  • [16] J. Skoryna, M. Wachowiak, A. Marczyńska, A. Rogowska, Ł. Majchrzycki, W. Koczorowski, R. Czajka, L. Smardz, Surf. Coat. Techn. 303, 119 (2016), doi: 10.1016/j.surfcoat.2016.03.030
  • [17] J. Skoryna, S. Pacanowski, A. Marczyńska, M. Werwiński, Ł. Majchrzycki, R. Czajka, L. Smardz, Surf. Coat. Techn. 303, 125 (2016), doi: 10.1016/j.surfcoat.2016.03.030
  • [18] L. Smardz, M. Nowak, M. Jurczyk, Int. J. of Hydrogen Energy 37, 3659 (2012), doi: 10.1016/j.ijhydene.2011.04.039
  • [19] L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, I. Okońska, Renewable Energy 33, 201 (2008), doi: 10.1016/j.renene.2007.05.006
  • [20] K. Smardz, L. Smardz, I. Okonska, M. Nowak, M. Jurczyk, International Journal of Hydrogen Energy 33, 387 (2008), doi: 10.1016/j.ijhydene.2007.07.032
  • [21] A. Marczyńska, J. Skoryna, B. Szymański, L. Smardz, Acta Phys.Pol. A 127, 552 (2015), doi: 10.12693/AphysPolA.127.552
  • [22] A. Marczyńska, J. Skoryna, L. Smardz, Acta Phys. Pol. A 126, 1315 (2014), doi: 10.12693/APhysPolA.126.1315
  • [23] D. Briggs, M.P. Seah, Practical Surface Analysis, John Wiley & Sons, New York 1990

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p082kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.