Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 591-593
Article title

Advantages of the DFT Augmented Symmetry Approach to Simulations of the Chromium-Based Ring Cr₈ within B3LYP Functional

Title variants
Languages of publication
The DFT estimates of magnetic couplings in molecular nanomagnets are computationally demanding and their values have not achieved the satisfactory accuracy in spite of a lot of effort. We concentrate here on comprehensive tests for predictions of the recently proposed augmented symmetry approach aiming at reducing the computational complexity of the DFT calculations which is particularly important for the Wien2k code. Using the B3LYP functional, we demonstrate the numerical stability of magnetic couplings, magnetic moments and the HOMO-LUMO gaps, changing the fraction of exact exchange α. We reach the significant gain in the computing time without a loss in the accuracy of the final results with respect to those obtained by the standard PBE approach. We conclude that the value α=0.25 leads to best estimation of magnetic couplings for hybrid functionals within Wien2k.
  • Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland
  • Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland
  • Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • [1] V. Bellini, A. Olivieri, F. Manghi, Phys. Rev. B 73, 184431 (2006), doi: 10.1103/PhysRevB.73.184431
  • [2] D.M. Tomecka, V. Bellini, F. Troiani, F. Manghi, G. Kamieniarz, M. Affronte, Phys. Rev. B 77, 224401 (2008), doi: 10.1103/PhysRevB.77.224401
  • [3] T. Ślusarski, B. Brzostowski, D. Tomecka, G. Kamieniarz, J. Nanosci. Nanotechnol. 11, 9080 (2011), doi: 10.1166/jnn.2011.4300
  • [4] V. Bellini, M. Affronte, J. Phys. Chem. B 114, 14797 (2010), doi: 10.1021/jp107544z
  • [5] S. Piligkos, H. Weihe, E. Bill, F. Neese, H.E. Mkami, G.M. Smith, D. Collison, G. Rajaraman, G.A. Timco, R.E.P. Winpenny, E.J.L. McInnes, Chem. Eur. J. 15, 3152 (2009), doi: 10.1002/chem.200801895
  • [6] M.L. Baker, G.A. Timco, S. Piligkos, J.S. Mathieson, H. Mutka, F. Tuna, P. Kozłowski, M. Antkowiak, T. Guidi, T. Gupta, H. Rath, R.J. Woolfson, G. Kamieniarz, R.G. Pritchard, H. Weihe, L. Cronin, G. Rajaraman, D. Collison, E.J.L. McInnes, R.E.P. Winpenny, Proc. Nat. Acad. Sci. 109, 19113 (2012), doi: 10.1073/pnas.1213127109
  • [7] M. Antkowiak, P. Kozłowski, G. Kamieniarz, G.A. Timco, F. Tuna, R.E.P. Winpenny, Phys. Rev. B 87, 184430 (2013), doi: 10.1103/PhysRevB.87.184430
  • [8] P. Kozłowski, G. Kamieniarz, M. Antkowiak, F. Tuna, G.A. Timco, R.E.P. Winpenny, Polyhedron 28, 1852 (2009), doi: 10.1016/j.poly.2009.02.022
  • [9] B. Brzostowski, R. Lemański, T. Ślusarski, D. Tomecka, G. Kamieniarz, J. Nanopart. Res. 15, 1528 (2013), doi: 10.1007/s11051-013-1528-2
  • [10] B. Brzostowski, M. Wojciechowski, R. Lemański, G. Kamieniarz, Acta Phys. Pol. A 126, 270 (2014), doi: 10.12693/APhysPolA.126.270
  • [11] M. Wojciechowski, B. Brzostowski, R. Lemański, G. Kamieniarz, Acta Phys. Pol. A 127, 410 (2015), doi: 10.12693/APhysPolA.127.410
  • [12] M. Sobocińska, M. Antkowiak, M. Wojciechowski, G. Kamieniarz, J. Utko, T. Lis, Dalton Trans. 45, 7303 (2016), doi: 10.1039/c5dt04869a
  • [13] G. Kamieniarz, P. Kozłowski, M. Antkowiak, P. Sobczak, T. Ślusarski, D.M. Tomecka, A. Barasiński, B. Brzostowski, A. Drzewiński, A. Bieńko, J. Mroziński, Acta Phys. Pol. A 121, 992 (2012), doi: 10.12693/APhysPolA.121.992
  • [14] M. Wojciechowski, B. Brzostowski, G. Kamieniarz, Lect. Notes Comp. Scie. 9574, 321 (2016), doi: 10.1007/978-3-319-32152-3_30
  • [15] M. Wojciechowski, B. Brzostowski, G. Kamieniarz, Comput. Meth. Scie. Technol. 22, 109 (2016), doi: 10.12921/cmst.2016.22.02.006
  • [16] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Ed. K. Schwarz, Techn. Universität Wien, Austria 2001
  • [17] M. Wojciechowski, B. Brzostowski, G. Kamieniarz, Acta Phys. Pol. A 127, 407 (2015), doi: 10.12693/APhysPolA.127.407
  • [18] L.J. Noodleman, Chem. Phys. 74, 5737 (1981), doi: 10.1063/1.440939
  • [19] B. Brzostowski, M. Wojciechowski, G. Kamieniarz, Acta Phys. Pol. A 126, 234 (2014), doi: 10.12693/APhysPolA.126.234
  • [20] E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 20, 1391 (1999), doi: 10.1002/(SICI)1096-987X(199910)20:13<1391::AID-JCC6>3.0.CO;2-J
  • [21] I. Rudra, Q. Wu, T. Van Voorhis, Inorg. Chem. 46, 10539 (2007), doi: 10.1021/ic700871f
  • [22] A. Chiesa, S. Carretta, P. Santini, G. Amoretti, E. Pavarini, Phys. Rev. Lett. 110, 157204 (2013), doi: 10.1103/PhysRevLett.110.157204
  • [23] A. Chiesa, S. Carretta, P. Santini, G. Amoretti, E. Pavarini, Phys. Rev. B 94, 224422 (2016), doi: 10.1103/PhysRevB.94.224422
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.