PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 588-590
Article title

Lysozyme Amyloid Fibrils Doped by Carbon Nanotubes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Production of new composites for the creation of modern materials with desired properties is the key feature of nanotechnology. Despite the well known advantages of magnetic nanoparticles, the aim of the present study was to synthesize lysozyme amyloid fibrils from hen egg white and subsequently doped this solution with single walled carbon nanotubes and with the magnetite Fe₃O₄ labelled single walled carbon nanotubes. Transmission electron microscopy and polarization optical microscopy were used to obtain the structural and dimensional information about samples. Measurements of magnetic properties indicate the considerable increase of the saturation magnetization for solutions included the magnetite nanoparticles.
Keywords
Contributors
  • Institute of Experimental Physics, SAS, Watsonova 47, 04001 Košice, Slovakia
  • Institute of Experimental Physics, SAS, Watsonova 47, 04001 Košice, Slovakia
author
  • Institute of Experimental Physics, SAS, Watsonova 47, 04001 Košice, Slovakia
author
  • Institute of Experimental Physics, SAS, Watsonova 47, 04001 Košice, Slovakia
  • Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
author
  • Pavol Jozef Šafárik University, Faculty of Science, Park Angelinum 9, 04001 Košice, Slovakia
  • Institute of Experimental Physics, SAS, Watsonova 47, 04001 Košice, Slovakia
References
  • [1] R. Saito, Physical properties of carbon nanotubes, Imperial College Press, UK 1998
  • [2] Ch. Li, R. Mezzenga, Nanoscale. 5, 6207 (2013), doi: 10.1039/c3nr01644g
  • [3] M. Jeníková, K. Zakuťanská, J. Kováč, V. Girman, P. Kopčanský, N. Tomašovičová, Acta Phys. Pol. A 4, 131 (2017), doi: 10.12693/APhysPolA.131.952
  • [4] K. Morris, L. Serpell, Chem. Soc. Rev. 39, 3445 (2010), doi: 10.1039/B919453N
  • [5] J. Majorošová. et al., Colloids and Surfaces B 146, 794 (2016), doi: 10.1016/j.colsurfb.2016.07.024
  • [6] F. Tardani, C. La Mesa, J. Phys. Chem. C 115 (19), 9424-9431, (2011), doi: 10.1021/jp2006167
  • [7] M. S. Mauter, M. Elimelech, Ch. O. Osujil, ACS Nano. 4, 6651 (2010), doi: 10.1021/nn102047j
  • [8] W. Jiang et al, Langmuir 23, 8549 (2007), doi: 10.1021/la700921w
  • [9] J. P. F. Lagerwall, G. Scalia, J. Mater. Chem. 18, 2890 (2008), doi: 10.1039/b802707b
  • [10] F. Bomboi, A. Bonincontro, C. La Mesa, F. Tardani, J. Coll. Int. Sci. 355, 342 (2011), doi: 10.1016/j.jcis.2010.12.026
  • [11] Pilehvar, K De Wael, Biosensors 5, 712-735 (2015), doi: 10.3390/bios5040712
  • [12] D. Nepal, S. Balasubramanian, A. L. Simonian, V. A. Davis, Nano Lett. 8, 1896-1901 (2008), doi: 10.1021/nl080522t
  • [13] S. Bolisetty, R. Mezzenga, Nature Nanotechnology 11(4), 365-71 (2016), doi: 10.1038/NNANO.2015.310
  • [14] P. Avouris, M. Freitag, V. Perebeinos, Nat. Photonics. 2, 341-350 (2008), doi: 10.1038/nphoton.2008.94
  • [15] Z. Mitróová et al., New J. Chem. 35, 1260 (2011), doi: 10.1039/c1nj20017h
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p078kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.