Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 585-587
Article title

The Shielding Effectiveness of a Magnetic Fluid in Radio Frequency Range

Title variants
Languages of publication
This article builds on the previous work and describes the interaction of transformer oil-based magnetic fluid (MF) with the radio frequency (RF) magnetic near-field. Three prepared samples of the MF used as a barrier to magnetic near-field, consist of transformer oil and dispersed magnetite nanoparticles coated with oleic acid. We pay attention to the important area related to the electromagnetic field shielding by the MF. Such sample of the MF may be a good candidate for applications where it is necessary to simultaneously electrically isolate, remove the excess of heat and to shield electromagnetic interference (EMI). We present a method for the determination of shielding effectiveness (SE) of the MF under RF excitation conditions ranging from 500 MHz to 3 GHz. We report the effect of magnetic volume fraction in the MF and the effect of the sample thickness on the SE.
Physical description
  • [1] X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press, London 2009
  • [2] V. Rubežiene, J. Baltušnikaite, S. Varnaite-Žuravliova, A. Sankauskaite, A. Abraitiene, J. Matuzas, J. Electrostat. 75, (2015), doi: 10.1016/j.elstat.2015.03.009
  • [3] S. Kuester, G.M.O. Barra, J.C. Ferreira Jr., B.G. Soares, N.R. Demarquette, Eur. Polym. J. 77, (2016), doi: 10.1016/j.eurpolymj.2016.02.020
  • [4] T. Wessapan, P. Rattanadecho, Int. J. Heat Mass Tran. 97, (2016), doi: 10.1016/j.ijheatmasstransfer.2016.02.021
  • [5] D.D.L. Chun, Carbon. 50, (2012), doi: 10.1016/j.carbon.2012.01.031
  • [6] J. Chen, D. Zhao, H. Ge, J. Wang, Constr. Build. Mater. 84, 66 (2015), doi: 10.1016/j.conbuildmat.2015.03.050
  • [7] J.C. Lin, Electromagnetic Fields in Biological Systems, CRC Press, London 2012
  • [8] F.S. Barnes, B. Greenebaum, Bioengineering and Biophysical Aspects of Electromagnetic Fields, CRC Press, London 2006
  • [9] L. Pengcheng, D. Donghe, G. Lin, G. Yongxin, O. Jianyong, J. Mater. Chem. C. 4, (2016), doi: 10.1039/C6TC01619G
  • [10] H. Zhao, L. Hou, Y. Lu, Mater. Design. 95, (2016), doi: 10.1016/j.matdes.2016.01.088
  • [11] P.J. Bora, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Materials Research Express, 4, (2017), doi: 10.1039/C6TC01619G
  • [12] J. Hallon, K. Kováč, Procedia Engineering. 69, (2014), doi: 10.1016/j.proeng.2014.02.199
  • [13] G. Betta, D. Capriglione, C.F.M. Carobbi, M.D. Migliore, Comput. Stand. Inter. 33, 2 (2011), doi: 10.1016/j.csi.2010.06.012
  • [14] P.C. Fannin, I. Malaescu, C.N. Marin, N. Stefu, Eur. Phys. J. E. 29, (2009), doi: 10.1140/epje/i2009-10477-7
  • [15] P.C. Fannin, I. Malaescu, N. Stefu, P. Vlăzan, S. Novaconi, P. Sfirloaga, S. Popescu, C. Couper, Mater. Design. 32, (2011), doi: 10.1016/j.matdes.2010.08.053
  • [16] P. C. Fannin, C.N. Marin, I. Malaescu, N. Stefu, P. Vlăzan, S. Novaconi, S. Popescu, J. Nanopart. Res. 13, (2011), doi: 10.1007/s11051-010-0032-1
  • [17] R. Kumar, S. K. Dhawan, H. K. Singh, A. Kaur, Mat. Chem. Phys. 180, (2016), doi: 10.1016/j.matchemphys.2016.06.025
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.