Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 574-577
Article title

Effect of Fe Substitution on Structural and Magnetic Properties of NiCr₂O₄

Title variants
Languages of publication
At room temperature, the normal oxide spinel NiCr₂O₄ is tetragonally distorted and crystallizes in the I4₁/amd space group due to cooperative Jahn-Teller ordering driven by the orbital degeneracy of tetrahedral Ni²⁺. The ferrimagnetic Curie temperature (T_{C}) for NiCr₂O₄ is 74 K. The magnetic moments of NiCr₂O₄ are composed of a ferrimagnetic (longitudinal) and an antiferromagnetic (transverse) component. Exchange interaction between the magnetic cations influences the overall magnetic properties of the compound. Present work focuses on the modification of structural and magnetic properties upon substituting Fe at Cr site in NiCr₂O₄ with the motivation of changing the magnetic exchange interaction. In order to do so, single phase Ni(Cr_{0.5}Fe_{0.5})₂O₄ samples were prepared by co-precipitation techniques, while controlling the pH of precipitation. Upon Fe substitution, crystal structure was not affected much contrary to the earlier reports. In order to determine the oxidation state of each elements X-ray photoelectron spectroscopy (XPS) was performed. T_{C} was found to increase dramatically above 300 K, confirmed both from temperature and field dependent dc-magnetization studies.
Physical description
  • [1] K. Tomiyasu, I. Kagomiya, J. Phys. Soc. Jpn. 73, 2539 (2004), doi: 10.1143/JPSJ.73.2539
  • [2] Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Thin Solid Films 407, 109 (2002), doi: 10.1016/S0040-6090(02)00021-4
  • [3] N. Mufti, A.A. Nugroho, G.R. Blake, T.T.M. Palstra, J. Phys.: Condens. Mater. 22, 075902 (2010), doi: 10.1088/0953-8984/22/7/075902
  • [4] J.D. Dunitz, L.E. Orgel, J. Phys. Chem. Solids 3, 20 (1957), doi: 10.1016/0022-3697(57)90043-4
  • [5] V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, I. Kézsmárki, Phys. Rev. B 87, 064416 (2013), doi: 10.1103/PhysRevB.87.064416
  • [6] H. Ishibashi, T. Yasumi, J. Magn. Magn. Mater. 310, e610 (2007), doi: 10.1016/j.jmmm.2006.10.1131
  • [7] M. R. Suchomel, D. P. Shoemaker, L. Ribaud, M. C. Kemei, R. Seshadri, Phys. Rev. B 86, 054406 (2012), doi: 10.1103/PhysRevB.86.054406
  • [8] T. D. Sparks, M. C. Kemei, P. T. Barton, R. Seshadri, E-D. Mun, V. S. Zapf, Phys. Rev. B 89, 024405 (2014), doi: 10.1103/PhysRevB.89.024405
  • [9] S. Klemme, J. C. van Miltenburg, Phys. Chem. Miner. 29, 663 (2002), doi: 10.1007/s00269-002-0280-4
  • [10] S. Prasad, N. S. Gajbhiye, J. Alloys Compounds 265, 87 (1998), doi: 10.1016/S0925-8388(97)00431-3
  • [11] J. Rodriguez-Carvajal, Physica B: Condensed Matter 192, 55 (1992), doi: 10.1016/0921-4526(93)90108-I
  • [12] Cryogenic Ltd, London, UK
  • [13] Washington State University, Physical Chemistry Laboratory 333&334 and Materials Science & Engineering MatS 571
  • [14] J. Barman, S. Ravi, Solid State Communications 201, 59 (2015), doi: 10.1016/j.ssc.2014.10.011
  • [15] S-I Park, K. R. Choi, T. Kouh, C. S. Kim, J. Magn. 12, 137 (2007), doi: 10.4283/JMAG.2007.12.4.137
  • [16] J. Chastain, R. C. King, Jr, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification, interpretation of XPS data Physical Electronics Inc., USA 1995
  • [17] M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S. I. Shah, Nanotechnology 17, 2675 (2006), doi: 10.1088/0957-4484/17/10/039
  • [18] B.D. Cullity, C.D. Graham, Introduction to Magnetic materials, Wiley, New Jersey 2009
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.