Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 570-573
Article title

Variation of Magnetic Fluid Deformation Related to Nanoparticle Concentration in Steady Electric Field

Title variants
Languages of publication
Today, it is important to know the behaviour of magnetic fluids applied in the power electrical machines, e.g. in power transformers, when exposed to an electric field. Besides their promising applications in high voltage engineering, they are of increasing interest from designed assembly and pattern formation point of view. The structure of such magnetic fluids is easily controllable by external magnetic fields. However, less attention has been paid to structural phenomena in magnetic fluids induced by electric fields. The core of this paper is dedicated to the experimental observation of a magnetic fluid droplet deformation in a steady electric field. The mutual relation between the deformation parameter and magnetic nanoparticles concentration is analysed. Spatio-temporal analysis of the droplet shape is presented in the paper. The phenomena of the droplet deformation were recorded by a camera. The detailed experimental procedure is presented. The method of deformation parameter calculation based on the linear pixel as the smallest-size unit in digital image is written. Finally, the relation between the deformation parameter and the nanoparticle volume concentration, as well as the time and magnitude of the DC field application are thoroughly evaluated. The results show that the deformation parameter decreases with increasing concentration at constant applied steady electric field but increases with increasing applied steady electric field.
Physical description
  • [1] R.-Q. Lv, Y. Zhao, H. Li, H.-F. Hu, IEEE Trans. Magn. 51, 1 (2015), doi: 10.1109/TMAG.2015.2394747
  • [2] G. Thirupathi R. Singh, IEEE Trans. Magn. 51, 1 (2015), doi: 10.1109/TMAG.2015.2437849
  • [3] V. A. Primo, B. García, J. C. Burgos, in: Int. Conf. Dielectrics (ICD) Montpellier 2016 IEEE 2016, p. 76, doi: 10.1109/ICD.2016.7547547
  • [4] A. Cavallini, F. Negri, in: Int. Conf. Dielectrics (ICD) Montpellier 2016 IEEE 2016, p. 88, doi: 10.1109/ICD.2016.7547547
  • [5] L. Pislaru-Danescu, A.M. Morega, M. Morega, V. Stoica, O.M. Marinica, F. Nouras, N. Paduraru, I. Borbath, T. Borbath, IEEE Trans. Ind. Appl. 49, 1289 (2013), doi: 10.1109/TIA.2013.2252872
  • [6] S. Chaudhari, S. Patil, R. Zambare, S. Chakraborty, in: 10th Int. Conf. Properties and Applications of Dielectric Materials, Bangalore 2012 IEEE 2012, p. 1, doi: 10.1109/ICPADM.2012.6318921
  • [7] J.G. Hwang, M. Zahn, F.M. O'Sullivan, L. A. Pettersson, O. Hjortstam, R. Liu, J. Appl. Phys 107, 14310 (2010), doi: 10.1109/CEIDP.2008.4772777
  • [8] Ch.T. O'Konski, H.C. Thacher Jr., J. Phys. Chem. 57, 955 (1953), doi: 10.1021/j150510a024
  • [9] R.S. Allan, S.G. Mason, Proc. R. Soc. Lond. A 267, 45 (1962), doi: 10.1098/rspa.1962.0082
  • [10] G. Taylor, Proc. R. Soc. Lond. A 291, 159 (1966), doi: 10.1098/rspa.1966.0086
  • [11] J. Lyklema, Fundamentals of Interface and Colloid Science: Solid-Liquid Interfaces, Vol. 2, Academic Press, Cambridge 1995
  • [12] R. Cimbala, J. Kurimský, M. Rajňák, K. Paulovičová, M. Timko, P. Kopčanský, M. Kolcun, M. Kosterec, S. Bucko, M. Kurimská, J. Elstat. 88, 55 (2017), doi: 10.1016/j.elstat.2017.01.025
  • [13] M. Rajnak, J. Kurimsky, B. Dolnik, K. Marton, L. Tomco, A. Taculescu, L. Vekas, J. Kovac, I. Vavra, J. Tothova, P. Kopcansky, M. Timko, J. Appl. Phys 114, 034313 (2013), doi: 10.1063/1.4816012
  • [14] Jong-Wook Ha, Seung-Man Yang, J. Colloid Interface Sci. 206, 195 (1998), doi: 10.1006/jcis.1998.5676
  • [15] N.G. Trinh, IEEE Trans. Power App. Sys. 99, 1235 (1980), doi: 10.1109/TPAS.1980.319754
  • [16] J.D. Sherwood, J. Phys. A: Math. Gen. 24, 4047 (1991), doi: 10.1088/0305-4470/24/17/021
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.