Journal
Article title
Title variants
Languages of publication
Abstracts
In this paper, we show analytically and numerically, that the ultrathin metallic layer up to few monatomic layers separating two ferromagnetic media, which are exchange coupled, can effectively change the phase of the reflected or transmitted spin waves. Taking into account ground states with parallel orientations of the magnetization vectors, we developed the analytical model, which shows the possibility of spin-wave phase control by varying the exchange coupling strength between two ferromagnets. Moreover, we demonstrate with micromagnetic simulations that the effect still exists for the spin waves propagating in thin ferromagnetic film during the reflection or transmission from the interface, where interlayer exchange interactions are present.
Discipline
- 75.78.Cd: Micromagnetic simulations
- 75.30.Ds: Spin waves(for spin-wave resonance, see 76.50.+g)
- 75.30.Kz: Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.)(for ferroelectric phase transitions, see 77.80.B-; for superconductivity phase diagrams, see 74.25.Dw)
Journal
Year
Volume
Issue
Pages
480-482
Physical description
Dates
published
2018-03
Contributors
author
- Faculty of Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremogy ave., 03056, Kyiv, Ukraine
author
- Faculty of Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremogy ave., 03056, Kyiv, Ukraine
- Institute of Magnetism, National Academy of Sciences of Ukraine, 36-b Vernadskogo st., 03142, Kyiv, Ukraine
author
- Institute of Magnetism, National Academy of Sciences of Ukraine, 36-b Vernadskogo st., 03142, Kyiv, Ukraine
author
- Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Poznań, 61-614, Poland
author
- Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Poznań, 61-614, Poland
References
- [1] K.S. Lee, S.K. Kim, J. Appl. Phys. 104, 053909 (2008), doi: 10.1063/1.2975235
- [2] R. Hertel, W. Wulfhekel, J. Kirschner, Phys. Rev. Lett. 93, 257202 (2004), doi: 10.1103/PhysRevLett.93.257202
- [3] X. Chen, Q. Wang, Y. Liao, X. Tang, H. Zhang, Z. Zhong, Journal of Magnetism and Magnetic Materials 394, 67(2015), doi: 10.1016/j.jmmm.2015.06.043
- [4] A. Khitun, K.L. Wang, J. Appl. Phys. 110, 034306 (2011), doi: 10.1063/1.3609062
- [5] T. Brächer, F. Heussner, P. Pirro, T. Meyer, T. Fischer, M. Geilen, B. Heinz, B. Lägel, A.A. Serga, B. Hillebrands, Scientific Reports 6, 38235 (2016), doi: 10.1038/srep38235
- [6] M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954), doi: 10.1103/PhysRev.96.99
- [7] P. Bruno, C. Chappert, Phys. Rev. B 46, 261 (1992), doi: 10.1103/PhysRevB.46.261
- [8] Yu.I. Gorobets, V.I. Finokhin, Phys. Metal. Metal. 56, 226 (1983)
- [9] V.V. Kruglyak, O.Yu. Gorobets, Yu.I. Gorobets, A.N. Kuchko, J. Phys.: Condens. Matter 26, 406001 (2014), doi: 10.1088/0953-8984/26/40/406001
- [10] P. Gruszecki, M. Mailyan, O. Gorobets, M. Krawczyk, Phys. Rev. B 95, 014421 (2017), doi: 10.1103/PhysRevB.95.014421
- [11] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, AIP Advanced 4, 107133 (2014), doi: 10.1063/1.4899186
- [12] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, John Wiley, Hoboken 2005
- [13] W. Chen, M. Han, Piers Online. 6, 101 (2010), doi: 10.2529/PIERS090824024047
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p044kz