Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
External electric field can modify the strength of the spin-orbit interaction between spins of ions in magnetic crystals. This influence leads to a spin wave frequency shift that is linear in both the applied electric field and the wave vector of the spin wave. Here, we explore theoretically the external electric field as a means of control of the spin wave power flow in ultrathin ferromagnets. The spin wave group velocity and focusing pattern is obtained from the slowness (isofrequency) curves by evaluating their curvature at each point of the reciprocal space. We show that the combination of the magneto-dipole interaction and the electric field can result in non-reciprocal unidirectional caustic beams of dipole-exchange spin waves. Our findings open a novel avenue for spin wave manipulation and development of electrically tuneable magnonic devices.
Discipline
- 75.30.Gw: Magnetic anisotropy
- 75.30.Ds: Spin waves(for spin-wave resonance, see 76.50.+g)
- 42.25.Bs: Wave propagation, transmission and absorption[see also 41.20.Jb—in electromagnetism; for propagation in atmosphere, see 42.68.Ay; see also 52.40.Db Electromagnetic (nonlaser) radiation interactions with plasma and 52.38-r Laser-plasma interactions—in plasma physics]
Journal
Year
Volume
Issue
Pages
463-465
Physical description
Dates
published
2018-03
Contributors
author
- Donetsk Institute for Physics and Engineering, the NAS of Ukraine, 46, Nauki Av., 03028, Kyiv, Ukraine
author
- Donetsk Institute for Physics and Engineering, the NAS of Ukraine, 46, Nauki Av., 03028, Kyiv, Ukraine
References
- [1] D. L. Mills, I.E. Dzyaloshinskii, Phys. Rev. B 78, 184422 (2008), doi: 10.1103/PhysRevB.78.184422
- [2] T. Liu, G. Vignale, Phys. Rev. Lett. 106, 247203 (2011), doi: 10.1103/PhysRevLett.106.247203
- [3] T. Liu, G. Vignale, J. Appl. Phys. 111, 083907 (2012), doi: 10.1063/1.4703925
- [4] X. Zhang, T. Liu, M.E. Flatté, H.X. Tang, Phys. Rev. Lett. 113, 037202 (2014), doi: 10.1103/PhysRevLett.113.037202
- [5] J.-V. Kim, R.L. Stamps, R.E. Camley, Phys. Rev. Lett. 117,197204 (2016), doi: 10.1103/PhysRevLett.117.197204
- [6] B.A. Kalinikos, A.N. Slavin, J. Phys. C: Solid State Phys 19, 7013 (1986)
- [7] R. Arias, D.L. Mills, Phys. Rev. B 60, 7395 (1999)
- [8] A.V. Vashkovsky, E.H. Lock, Phys. Usp. 49, 389 (2006), doi: 10.1070/PU2006v049n04ABEH005807
- [9] E.H. Lock, Phys. Usp. 51, 375 (2008), doi: 10.1070/PU2008v051n04ABEH006460
- [10] V. Veerakumar, R. E. Camley, Phys. Rev. B 74, 214401 (2006), doi: 10.1103/PhysRevB.74.214401
- [11] T. Schneider, A.A. Serga, A.V. Chumak, C.W. Sandweg, S. Trudel, S. Wolff, M.P. Kostylev, V.S. Tiberkevich, A.N. Slavin, B. Hillebrands, Phys. Rev. Lett. 104, 197203 (2010), doi: 10.1103/PhysRevLett.104.197203
- [12] V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010), doi: 10.1088/0022-3727/43/26/264001
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p039kz