PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 441-443
Article title

Heisenberg and Bethe Field Extensions Applied to Magnetic Rings

Content
Title variants
Languages of publication
EN
Abstracts
EN
We consider striking connections between the theory of homogenous isotropic Heisenberg ring (XXX-model) and algebraic number theory. We explain the nature of these connections especially applications of Galois theory for computation of the spectrum of the Heisenberg operators and Bethe parameters. The solutions of the Heisenberg eigenproblem and Bethe Ansatz generate interesting families of algebraic number fields. Galois theory yields additional symmetries which not only simplify the analysis of the model but may lead to new applications and horizons.
Keywords
Contributors
author
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
author
  • Department of Mathematics and Physics, Szczecin University, Wielkopolska 15, 70-415 Szczecin, Poland
author
  • Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
References
  • [1] G. Banaszak, S. Barańczuk, T. Lulek, J. Milewski, R. Stagraczy, 121, 1111 (2012), doi: 10.12693/APhysPolA.121.1111
  • [2] J. Milewski, G. Banaszak, T. Lulek, M. Łabuz, R. Stagraczyński, Open Syst. Inf. Dyn. 19, 1250012 (2012), doi: 10.1142/S1230161212500126
  • [3] G. Banaszak, B. Lulek, T. Lulek, J. Milewski, B. Szydło, Rep. Math. Phys. 71, 205 (2013), doi: 10.1016/S0034-4877(13)60030-0
  • [4] J. Milewski, Rep. Math. Phys. 70, 345 (2012), doi: 10.1016/S0034-4877(12)60050-0
  • [5] S.V. Kerov, A.N. Kirillov, N.Y. Reshetikhin, J. Sov. Math. 41, 916 (1988), doi: 10.1007/BF01247087
  • [6] A.N. Kirillov, N.Y. Reshetikhin, J. Sov. Math. 41, 925 (1988), doi: 10.1007/BF01247088
  • [7] R. Langlands, Y. Saint-Aubin, Aspects combinatoires des équations de Bethe, First appeared in Adv. Math. Sci.: CRM's 25 years, Ed. L. Vinet, CRM Proc. and Lecture Notes, Am. Math. Soc., 1997 http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/bethe-ps.pdf
  • [8] R. Langlands, Y. Saint-Aubin, Algebro-geometric aspects of the Bethe equations, Proc. of Gürsey Memorial Conference, Springer-Verlag 1995, doi: 10.1007/3-540-59163-X_254
  • [9] P. Krasoń, J. Milewski, Cyclic group actions and restricted partitions, preprint (2017)
  • [10] J. Milewski, G. Banaszak, T. Lulek, Open Syst. Inf. Dyn. 17, 89 (2010), doi: 10.1142/S1230161210000072
  • [11] H. Bethe: Z. Physik 71, 205 (1931), doi: 10.1007/BF01341708
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p032kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.