Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
In this article we focus on impact of micromagnetic structures on magnetoelectricity of multiferroics. We discuss physical mechanisms of magnetoelectric coupling considering domain walls and spin cycloids. We review the progress on multiferroic materials focusing on high temperature multiferroic: rare earth iron garnet and bismuth ferrite. We argue that topological structures play a pivotal role in multiferoics and show that electric control of magnetism can be carried out via spin spirals and domain walls. Magnetic domain walls produce ferroelectricity in rare earth iron garnets; transformations of spin cycloids release magnetoelectricity in bismuth ferrite. Ferroic orders couple via magnetic inhomogeneities, which shed new light on fundamental physics and applications.
Discipline
Journal
Year
Volume
Issue
Pages
380-383
Physical description
Dates
published
2018-03
Contributors
author
- Institute of Molecule and Crystal Physics, Russia Academy of Sciences, pr. Octyabrya 151, Ufa, Russia
- Bashkir State University, ul. Z. Validi, 32, Ufa, Russia
author
- A.M. Prokhorov General Physics Institute, Russia Academy of Sciences, ul.Vavilova 38, Moscow, Russia
author
- National Research University of Electronic Technology, Shokin Square 1, Zelenograd, Moscow, Russia
author
- A.M. Prokhorov General Physics Institute, Russia Academy of Sciences, ul.Vavilova 38, Moscow, Russia
- Faculty of Physics, National Research University Higher School of Economics, Myasnitskaya 20, 101000 Moscow, Russia
References
- [1] G.A. Smolenskii, I.E.F. Chupis, Sov. Phys.-Usp. 137, 475 (1982), doi: 10.1070/PU1982v025n07ABEH004570
- [2] G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84, 119 (2012), doi: 10.1103/RevModPhys.84.119
- [3] I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C: Solid State Physics 15, 4835 (1982), doi: 10.1088/0022-3719/15/23/020
- [4] I. Sosnowska, A.K. Zvezdin, JMMM 140, 167 (1995), doi: 10.1016/0304-8853(94)01120-6
- [5] Z.V. Gabbasova, et al., Phys. Lett. A. 158, 491 (1991), doi: 10.1016/0375-9601(91)90467-M
- [6] Y.F. Popov, et al., ZhETF Pisma Redaktsiiu 57, 69 (1993)
- [7] M.M. Tehranchi, N.F. Kubrakov, A.K. Zvezdin, Ferroelectrics 204, 181 (1997), doi: 10.1080/00150199708222198
- [8] J. Li, et al., Appl. Phys. Lett. 84, 5261 (2004), doi: 10.1063/1.1764944
- [9] M. Tokunaga, Frontiers of Physics 7, 386 (2012), doi: 10.1007/s11467-011-0203-2
- [10] C.J. Fennie, Phys. Rev. Lett. 100, 167203 (2008), doi: 10.1103/PhysRevLett.100.167203
- [11] A.K. Zvezdin, A.P. Pyatakov, EuroPhys. Lett. 99, 57003 (2012), doi: 10.1209/0295-5075/99/57003
- [12] A.F. Popkov, et al., Phys. Rev. B 93, 094435 (2016), doi: 10.1103/PhysRevB.93.094435
- [13] A.F. Popkov, et al., Phys. Rev.B 92, 14 (2015), doi: 10.1103/PhysRevB.92.140414
- [14] D. Sando, et al., Nat. Mater. 12, 641 (2013), doi: 10.1038/nmat3629
- [15] A. Agbelele, et al., Adv. Mater. 29, 1602327 (2017), doi: 10.1002/adma.201602327
- [16] Z.V. Gareeva, O. Diéguez, J. Íńiguez, A.K. Zvezdin, physica status solidi (RRL) 10, 209 (2015)), doi: 10.1002/pssr.201510273
- [17] M. Fiebig, D. Meier, J. Phys.: Cond. Matter 27, 463003 (2015), doi: 10.1088/0953-8984/27/46/463003
- [18] A.K. Zvezdin, A.P. Pyatakov, Physics-Uspekhi 52, 845 (2009)
- [19] A.S. Logginov, et al., Appl. Phys.Lett. 93, 182510 (2008), doi: 10.1063/1.3013569
- [20] N. Khokhlov et al., Sci. Rep. 7, (2017), doi: 10.1038/s41598-017-00365-8
- [21] A.I. Popov, D.I. Plokhov, A.K. Zvezdin, Phys. Rev. B 87, 024413 (2013), doi: 10.1103/PhysRevB.87.024413)
- [22] A.I. Popov, Z.V. Gareeva, A.K. Zvezdin, Phys. Rev. B 92, 144420 (2015), doi: 10.1103/PhysRevB.92.144420
- [23] D.P. Kulikova, et al., JETP Lett. 104, 196 (2016), doi: 10.7868/S0370274X1615011X
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p013kz