PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 380-383
Article title

Magnetic Topological Structures in Multiferroics

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this article we focus on impact of micromagnetic structures on magnetoelectricity of multiferroics. We discuss physical mechanisms of magnetoelectric coupling considering domain walls and spin cycloids. We review the progress on multiferroic materials focusing on high temperature multiferroic: rare earth iron garnet and bismuth ferrite. We argue that topological structures play a pivotal role in multiferoics and show that electric control of magnetism can be carried out via spin spirals and domain walls. Magnetic domain walls produce ferroelectricity in rare earth iron garnets; transformations of spin cycloids release magnetoelectricity in bismuth ferrite. Ferroic orders couple via magnetic inhomogeneities, which shed new light on fundamental physics and applications.
Keywords
Year
Volume
133
Issue
3
Pages
380-383
Physical description
Dates
published
2018-03
References
  • [1] G.A. Smolenskii, I.E.F. Chupis, Sov. Phys.-Usp. 137, 475 (1982), doi: 10.1070/PU1982v025n07ABEH004570
  • [2] G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84, 119 (2012), doi: 10.1103/RevModPhys.84.119
  • [3] I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C: Solid State Physics 15, 4835 (1982), doi: 10.1088/0022-3719/15/23/020
  • [4] I. Sosnowska, A.K. Zvezdin, JMMM 140, 167 (1995), doi: 10.1016/0304-8853(94)01120-6
  • [5] Z.V. Gabbasova, et al., Phys. Lett. A. 158, 491 (1991), doi: 10.1016/0375-9601(91)90467-M
  • [6] Y.F. Popov, et al., ZhETF Pisma Redaktsiiu 57, 69 (1993)
  • [7] M.M. Tehranchi, N.F. Kubrakov, A.K. Zvezdin, Ferroelectrics 204, 181 (1997), doi: 10.1080/00150199708222198
  • [8] J. Li, et al., Appl. Phys. Lett. 84, 5261 (2004), doi: 10.1063/1.1764944
  • [9] M. Tokunaga, Frontiers of Physics 7, 386 (2012), doi: 10.1007/s11467-011-0203-2
  • [10] C.J. Fennie, Phys. Rev. Lett. 100, 167203 (2008), doi: 10.1103/PhysRevLett.100.167203
  • [11] A.K. Zvezdin, A.P. Pyatakov, EuroPhys. Lett. 99, 57003 (2012), doi: 10.1209/0295-5075/99/57003
  • [12] A.F. Popkov, et al., Phys. Rev. B 93, 094435 (2016), doi: 10.1103/PhysRevB.93.094435
  • [13] A.F. Popkov, et al., Phys. Rev.B 92, 14 (2015), doi: 10.1103/PhysRevB.92.140414
  • [14] D. Sando, et al., Nat. Mater. 12, 641 (2013), doi: 10.1038/nmat3629
  • [15] A. Agbelele, et al., Adv. Mater. 29, 1602327 (2017), doi: 10.1002/adma.201602327
  • [16] Z.V. Gareeva, O. Diéguez, J. Íńiguez, A.K. Zvezdin, physica status solidi (RRL) 10, 209 (2015)), doi: 10.1002/pssr.201510273
  • [17] M. Fiebig, D. Meier, J. Phys.: Cond. Matter 27, 463003 (2015), doi: 10.1088/0953-8984/27/46/463003
  • [18] A.K. Zvezdin, A.P. Pyatakov, Physics-Uspekhi 52, 845 (2009)
  • [19] A.S. Logginov, et al., Appl. Phys.Lett. 93, 182510 (2008), doi: 10.1063/1.3013569
  • [20] N. Khokhlov et al., Sci. Rep. 7, (2017), doi: 10.1038/s41598-017-00365-8
  • [21] A.I. Popov, D.I. Plokhov, A.K. Zvezdin, Phys. Rev. B 87, 024413 (2013), doi: 10.1103/PhysRevB.87.024413)
  • [22] A.I. Popov, Z.V. Gareeva, A.K. Zvezdin, Phys. Rev. B 92, 144420 (2015), doi: 10.1103/PhysRevB.92.144420
  • [23] D.P. Kulikova, et al., JETP Lett. 104, 196 (2016), doi: 10.7868/S0370274X1615011X
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv133n3p013kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.