Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 376-379

Article title

On the Current Flow in Superconductors: Universal Trends and Holographic Analysis

Content

Title variants

Languages of publication

EN

Abstracts

EN
The superconducting state can be destroyed by the increase of temperature, magnetic field or current flow beyond their critical values. The critical current I_{c} is of special interest as most of the practical applications of superconductors crucially depend on its limiting value. Recent analysis of experimental data in many families of type I and type II superconductors have discovered an interesting universal relation between critical current density j_{c}, the critical magnetic field H_{c} and the penetration depth λ. For type II superconductors the role of the thermodynamic critical field H_{c} is played by the lower critical field H_{c1} and ratio between the relevant dimension of the system d with respect to the penetration depth matters. Thus the effective dimensionality of the system is important and rules the system behaviour. It turns out that the holographic analogy provides an interesting justification of the above findings. We have calculated the temperature dependence of the critical current in the strongly coupled holographic superconductors with the current flow. It has been found that, independently of the symmetry of the order parameter, the critical current depends on temperature in 2d systems as I_{c} ∝ (T_{c}-T)^{3/2} and agrees with that observed in thin films (d < λ). Similar calculations for 3d systems (d > λ) reveal linear T-dependence I_{c} ∝ (T_{c}-T).

Keywords

EN

Contributors

author
  • Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

References

  • [1] M. Cyrot, D. Pavuna, Introduuction to Supeconductivity, High-T$_c$ Materials, World Scientific 1992
  • [2] D. Dew-Hughes, Low. Temp. Phys. 27, 713 (2001), doi: 10.1063/1.1401180
  • [3] E.F. Talantsev, J.L. Tallon, Nat. Commun. 6, 7820 (2015), doi: 10.1038/ncomms8820
  • [4] E.F. Talantsev, W.P. Crump, J.L. Tallon, arXiv: 1609.03670 http://arXiv.org/abs/1609.03670
  • [5] M. Rogatko, K. I. Wysokiński, J. High Energy Phys. 10, 152 (2016) doi: 10.1007/JHEP10(2016)152
  • [6] A. Szewczyk, A. Wiśniewski, R. Puźniak, H. Szymczak, Magnetyzm i nadprzewodnictwo, PWN, Warszawa 2012, (in Polish)
  • [7] H. London, Proc. Royal Soc. London, Ser. A 152, 650 (1935)
  • [8] A. Shalnikov, Nature (London) 142, 74 (1938)
  • [9] R.G. Cai, L.Li, L.F. Li, R.Q. Yang, Science China 58, 060401 (2015), doi: 10.1007/s11433-015-5676-5
  • [10] P. Basu, A. Mukherjee, H.H. Shieh, Phys. Rev. D 79, 045010 (2009), doi: 10.1103/PhysRevD.79.045010
  • [11] D. Area, M. Bertolini, J. Evslin, T. Prochazka, J. High Energy Phys. 7, 60 (2010), doi: 10.1007/JHEP07(2010)060
  • [12] H.B. Zeng, W.M. Sun, H.S. Zong, Phys. Rev. D 83, 046010 (2011), doi: 10.1103/PhysRevD.83.046010
  • [13] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012), doi: 10.1143/JPSJ.81.011009
  • [14] A. Kamiński, S. Rosenkranz, M.-R. Norman, M. Randeria, Z.-Z. Li, H. Raffy, J.-C. Campuzano, Phys. Rev. X 6, 031040 (2016), doi: 10.1103/PhysRevX.6.031040

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p012kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.