Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 376-379
Article title

On the Current Flow in Superconductors: Universal Trends and Holographic Analysis

Title variants
Languages of publication
The superconducting state can be destroyed by the increase of temperature, magnetic field or current flow beyond their critical values. The critical current I_{c} is of special interest as most of the practical applications of superconductors crucially depend on its limiting value. Recent analysis of experimental data in many families of type I and type II superconductors have discovered an interesting universal relation between critical current density j_{c}, the critical magnetic field H_{c} and the penetration depth λ. For type II superconductors the role of the thermodynamic critical field H_{c} is played by the lower critical field H_{c1} and ratio between the relevant dimension of the system d with respect to the penetration depth matters. Thus the effective dimensionality of the system is important and rules the system behaviour. It turns out that the holographic analogy provides an interesting justification of the above findings. We have calculated the temperature dependence of the critical current in the strongly coupled holographic superconductors with the current flow. It has been found that, independently of the symmetry of the order parameter, the critical current depends on temperature in 2d systems as I_{c} ∝ (T_{c}-T)^{3/2} and agrees with that observed in thin films (d < λ). Similar calculations for 3d systems (d > λ) reveal linear T-dependence I_{c} ∝ (T_{c}-T).
  • Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
  • [1] M. Cyrot, D. Pavuna, Introduuction to Supeconductivity, High-T$_c$ Materials, World Scientific 1992
  • [2] D. Dew-Hughes, Low. Temp. Phys. 27, 713 (2001), doi: 10.1063/1.1401180
  • [3] E.F. Talantsev, J.L. Tallon, Nat. Commun. 6, 7820 (2015), doi: 10.1038/ncomms8820
  • [4] E.F. Talantsev, W.P. Crump, J.L. Tallon, arXiv: 1609.03670
  • [5] M. Rogatko, K. I. Wysokiński, J. High Energy Phys. 10, 152 (2016) doi: 10.1007/JHEP10(2016)152
  • [6] A. Szewczyk, A. Wiśniewski, R. Puźniak, H. Szymczak, Magnetyzm i nadprzewodnictwo, PWN, Warszawa 2012, (in Polish)
  • [7] H. London, Proc. Royal Soc. London, Ser. A 152, 650 (1935)
  • [8] A. Shalnikov, Nature (London) 142, 74 (1938)
  • [9] R.G. Cai, L.Li, L.F. Li, R.Q. Yang, Science China 58, 060401 (2015), doi: 10.1007/s11433-015-5676-5
  • [10] P. Basu, A. Mukherjee, H.H. Shieh, Phys. Rev. D 79, 045010 (2009), doi: 10.1103/PhysRevD.79.045010
  • [11] D. Area, M. Bertolini, J. Evslin, T. Prochazka, J. High Energy Phys. 7, 60 (2010), doi: 10.1007/JHEP07(2010)060
  • [12] H.B. Zeng, W.M. Sun, H.S. Zong, Phys. Rev. D 83, 046010 (2011), doi: 10.1103/PhysRevD.83.046010
  • [13] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012), doi: 10.1143/JPSJ.81.011009
  • [14] A. Kamiński, S. Rosenkranz, M.-R. Norman, M. Randeria, Z.-Z. Li, H. Raffy, J.-C. Campuzano, Phys. Rev. X 6, 031040 (2016), doi: 10.1103/PhysRevX.6.031040
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.