Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 372-375

Article title

Structure and Hyperfine Interactions of Mechanically Activated Delafossite CuFeO₂

Content

Title variants

Languages of publication

EN

Abstracts

EN
Delafossite CuFeO₂ belongs to multiferroic class of materials. In this work, copper ferrite was prepared by mechanical activation with subsequent thermal treatment. X-ray diffraction and Mössbauer spectroscopy were used as complementary methods to study the structure and hyperfine interactions of the material. As proved by X-ray diffraction, CuFeO₂ compound was obtained with relatively low amount of secondary phases like CuO and CuFe₂O₄. The Mössbauer spectroscopy revealed paramagnetic character of the compound at room temperature. The purest delafossite CuFeO₂ was obtained by mechanical activation of pre-milled precursors and sintering at 1173 K. The temperature of thermal treatment is lower by 100 K as compared to the traditional solid-state synthesis.

Keywords

EN

Contributors

author
  • Institute of Electronics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland
author
  • Institute of Electronics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland
author
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
author
  • Institute of Electronics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland

References

  • [1] A. Bera, K. Deb, K.K. Chattopadhyay, R. Thapa, B. Saha, Microelectron. Eng. 162, 23 (2016), doi: 10.1016/j.mee.2016.04.020
  • [2] M.S. Prévot, Y. Li, N. Guijarro, K. Sivula, J. Mater. Chem. A 4, 3018 (2016), doi: 10.1039/c5ta06336a
  • [3] Z. Deng, X. Fang, X. Wang, S. Wu, W. Dong, J. Shao, R. Tao, Thin Solid Films 589, 17 (2015), doi: 10.1016/j.tsf.2015.04.066
  • [4] M.C. Friedel, C. R. Acad. Sci. Paris 77, 211 (1873).
  • [5] K.E. Farley, A.C. Marschilok, E.S Takeuchi, K.J. Takeuchi, Electrochem. Sol. St. 15(2), A23 (2012), doi: 10.1149/2.010202esl
  • [6] M.M. Marquardt, N.A. Ashmore, D.P Cann, Thin Solid Films 496, 146 (2006), doi: 10.1016/j.tsf.2005.08.316
  • [7] W.C. Sheets, E. Mugnier, A. Barnabé, T.J. Marks, K.R. Poeppelmeier, Chem. Mater. 18, 7 (2006), doi: 10.1021/cm051791c
  • [8] M. Lalanne, A. Barnabé, F. Mathieu, Ph. Tailhades, Inorg. Chem. 48, 6065 (2009), doi: 10.1021/ic900437x
  • [9] M. John, S. Heuss-Aßbichler, A. Ullrich, J. Solid State Chem. 234, 55 (2016), doi: 10.1016/j.jssc.2015.11.033
  • [10] E. Jartych, B. Malesa, A. Antolak-Dudka, D. Oleszak, Acta Phys. Pol. A 125, 837 (2014), doi: 10.12693/APhysPolA.125.837
  • [11] M. Mazurek, D. Oleszak, T. Pikula, M. Karolus, E. Jartych, Acta Phys. Pol. A 126, 975 (2014), doi: 10.12693/APhysPolA.126.975
  • [12] T. Pikula, B. Malesa, D. Oleszak, M. Karolus, Z. Surowiec, V.I. Mitsiuk, E. Jartych, Solid State Commun. 246, 47 (2016), doi: 10.1016/j.ssc.2016.08.001
  • [13] A. M. Sukeshini, H. Kobayashi, M. Tabuchi, H. Kageyama, Solid State Ionics 128, 33 (2000), doi: 10.1016/S0167-2738(00)00274-5
  • [14] R.D. Shannon, D.B. Rogers, C.T. Prewitt, Inorg. Chem. 10, 713 (1971), doi: 10.1021/ic50098a011
  • [15] H. Wiederish, J.W. Savage, A.H. Muir Jr., D.G. Swarthout, Mineral. Magn. 36, 643 (1968), doi: 10.1180/minmag.1968.036.281.05
  • [16] B.J. Evans, S. Hafner, G.M. Kalvius, Physics Letters 23, 24 (1966), doi: 10.1016/0031-9163(66)90237-X

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p011kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.