Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 366-368
Article title

Enhanced Thermoelectric Power Factors in the Ce(Ni_{1-x}Cu_{x})₂Si₂ and CeNi₂(Si_{1-y}Ge_{y})₂ Alloys

Title variants
Languages of publication
In the presence of hybridization of the f states with the conduction electrons Ce-based compounds can show large peaks in the temperature dependence of the Seebeck coefficient, which makes them interesting materials for applications. The Seebeck coefficient and electrical resistivity of the bulk, arc-melted, single phase samples of Ce(Ni_{1-x}Cu_{x})₂Si₂ and CeNi₂(Si_{1-y}Ge_{y})₂ alloys were measured over the temperature range of 2 K to 300 K. All the samples exhibited a positive Seebeck coefficient, which reaches up to ım50μV/K at 150 K and it can be shifted up to 300 K by appropriate doping. The thermoelectric power factor, PF = S²/ρ, reached a maximum of 1.4×10¯³ Wm¯¹K¯² at 290 K and 1.1×10¯³ Wm¯¹K¯² at 110 K for x=0.25 and y=0.75, respectively. For selected representatives of the studied series thermoelectric properties have been measured up to 1000 K.
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
  • Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
  • Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
  • Institute of Physics, Kazimierza Wielkiego University, Bydgoszcz, Poland
  • Western Scientific Center of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, L'viv, Ukraine
  • [1] C.S. Garde, J. Ray, Phys. Rev. B 51, 2960 (1995), doi: 10.1103/PhysRevB.51.2960
  • [2] T. Toliński, V. Zlatić, A. Kowalczyk, J. Alloys Compd. 490, 15 (2010), doi: 10.1016/j.jallcom.2009.10.028
  • [3] T. Toliński, Eur. Phys. J. B 84, 177 (2011), doi: 10.1140/epjb/e2011-20159-1
  • [4] M. Falkowski, A. Kowalczyk, Intermetallics 20, 173 (2012), doi: 10.1016/j.intermet.2011.08.009
  • [5] T. Toliński, K. Synoradzki, M. Koterlyn, G. Koterlyn, R. Yasnitskii, J. Alloys Compd. 580, 512 (2013), doi: 10.1016/j.jallcom.2013.06.080
  • [6] M. Falkowski, A. Kowalczyk, J. Alloys Compd. 591, 293 (2014), doi: 10.1016/j.jallcom.2013.12.203
  • [7] P. Witas, L. Kalinowski, J. Goraus, M. Fijałkowski, A. Ślebarski, Acta Phys. Pol. A 127, 309 (2015), doi: 10.12693/APhysPolA.127.309
  • [8] T. Toliński, K. Synoradzki, M. Koterlyn, G. Koterlyn, Appl. Phys. A (2017), doi: 10.1007/s00339-017-1017-z
  • [9] K. Synoradzki, T. Toliński, G. Chełkowska, A. Bajorek, M. Zapotoková, M. Reiffers, A. Hoser, J. Alloys Compd. 601, 43 (2014), doi: 10.1016/j.jallcom.2014.02.117
  • [10] K. Synoradzki, A. Kowalczyk, T. Toliński, Phys. Status Solidi B 252, 1946 (2015), doi: 10.1002/pssb.201451706
  • [11] K. Synoradzki, T. Toliński, Acta Phys. Pol. A 127, 210 (2015), doi: 10.12693/APhysPolA.127.210
  • [12] K. Synoradzki, T. Toliński, Mater. Chem. Phys. 177, 242 (2016), doi: 10.1016/j.matchemphys.2016.04.025
  • [13] W. Franz, A. Griessel, F. Steglich, D. Wohlleben, Z. Phys. B Condens. Matter Quanta 31, 7 (1978), doi: 10.1007/BF01320122
  • [14] G.J. Lehr, D.T. Morelli, H. Jin, J.P. Heremans, J. Electron. Mater. 44, 1663 (2015), doi: 10.1007/s11664-014-3509-3
  • [15] C. Gayner and K.K. Kar, Prog. Mater. Sci. 83, 330 (2016), doi: 10.1016/j.pmatsci.2016.07.002
  • [16] G.J. Lehr, D.T. Morelli, J. Electron. Mater. 42, 1697 (2013), doi: 10.1007/s11664-012-2401-2
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.