Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 329-335

Article title

Quantum Cellular Automata: a Short Overview of Molecular Problem

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this article we summarize the study of the electronic states and electron-vibrational interactions in square-planar molecular entities playing the role of molecular cells in quantum cellular automata (QCA), a promising paradigm of quantum computing. The following issues are shortly discussed: 1) QCA as a paradigm of quantum computing; 2) molecular implementation of QCA; 3) vibronic coupling as the origin of charge trapping, encoding of binary information 4) non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cells; 5) multimode dynamic vibronic problem, the symmetry assisted approach.

Keywords

EN

Year

Volume

133

Issue

3

Pages

329-335

Physical description

Dates

published
2018-03

Contributors

author
  • Ben-Gurion University of the Negev, Beer-Sheva, Israel
author
  • Institute of Problems of Chemical Physics, Chernogolovka, Russia
  • Institute of Applied Physics, Academy of Sciences of Moldova, Kishinev, Moldova
  • Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, Spain
author
  • Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, Toulouse, France
author
  • Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, Spain

References

  • [1] S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, B. Barbara, Nature 453, 203 (2008), doi: 10.1038/nature06962
  • [2] R.E.P. Winpenny, Angew. Chem. Int. Ed. 47, 2 (2008), doi: 10.1002/anie.200890079
  • [3] C.S. Lent, P. Tougaw, W. Porod, G. Bernstein, Nanotechnology 4, 49 (1993), doi: 10.1088/0957-4484/4/1/004
  • [4] W. Porod, S.G. Lent, G. Bernstein, A.O. Orlov, I. Amlani, G.L. Snider, J.L. Merz, Int. J. Electronics 86, 549 (1999), doi: 10.1080/002072199133265
  • [5] E.P. Blair, S.A. Corcelli, S.G. Lent, J. Chem. Phys. 145, 014307 (2016), doi: 10.1063/1.4955113
  • [6] P.D. Tougaw, C.S. Lent, J. Appl. Phys. 75, 1818 (1994), doi: 10.1063/1.356375
  • [7] G. Töth, C.S. Lent, J. Appl. Phys. 85, 2977 (1999), doi: 10.1063/1.369063
  • [8] C.S. Lent, Science 288, 1597 (2000), doi: 10.1126/science.288.5471.1597
  • [9] C.S. Lent, B. Isaksen, M. Lieberman, J. Am. Chem. Soc. 125, 1056 (2003), doi: 10.1021/ja026856g
  • [10] C.S. Lent, P. Tougaw, W. Porod, Appl. Phys. Lett. 62, 714 (1993), doi: 10.1063/1.108848
  • [11] C.S. Lent, B. Isaksen, IEEE Trans. Electron. Devices 50, 1890 (2003), doi: 10.1109/TED.2003.815857
  • [12] M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, S. G. Lent, G. H. Bernstein, G. Snider, F. C. Peiris, Ann. N.Y. Acad. Sci. 960, 225 (2002), doi: 10.1111/j.1749-6632.2002.tb03037.x
  • [13] S.B. Braun-Sand, O. Wiest, J. Phys. Chem. A 107, 285 (2003), doi: 10.1021/jp0265945
  • [14] J.M. Clemente-Juan, E. Coronado, Coord. Chem. Rev. 193-195, 361 (1999), doi: 10.1016/S0010-8545(99)00170-8
  • [15] P. Kögerler, B. Tsukerblat, A. Müller, Dalton Trans. 39, 21 (2010), doi: 10.1039/B910716A
  • [16] J.M. Clemente-Juan, E. Coronado, A. Gaita-Arińo, Chem. Soc. Rev. 41 7464 (2012), doi: 10.1039/c2cs35205b
  • [17] S. Záliš, B. Sarkar, C. Duboc, W. Kaim, Monatsh. Chem. 140, 765 (2009), doi: 10.1007/s00706-009-0129-3
  • [18] B. Tsukerblat, A. Palii, J.M. Clemente-Juan, E. Coronado, J. Chem. Physics 143, 134307 (2015), doi: 10.1063/1.4932106
  • [19] A. Palii, B. Tsukerblat, J.M. Clemente-Juan, E. Coronado, J. Phys. Chem. C 120, 16994 (2016), doi: 10.1021/acs.jpcc.6b02587
  • [20] J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S. Tsukerblat, Chem. Phys. 195, 1 (1995), doi: 10.1016/0301-0104(95)00009-D
  • [21] J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S. Tsukerblat, Chem. Phys. 195, 17 (1995), doi: 10.1016/0301-0104(95)00010-L
  • [21a] J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S. Tsukerblat, Chem. Phys. 195, 29 (1995), doi: 10.1016/0301-0104(95)00011-C
  • [22] N. Suaud, A. Gaita-Ariño, J.M. Clemente-Juan, J. Sánchez-Marín, E. Coronado, J. Am. Chem. Soc. 124, 15134 (2002), doi: 10.1021/ja027806e
  • [22a] C.J. Calzado, J.M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, N. Suaud, Inorg. Chem. 47, 5889 (2008), doi: 10.1021/ic8002355
  • [23] S.B. Piepho, E.R. Krausz, P.N. Shatz, J. Am. Chem. Soc. 100, 2996 (1978), doi: 10.1021/ja00478a011
  • [24] B.S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 31, 168 (2002), doi: 10.1039/b008034i
  • [25] S.B. Piepho, J. Am. Chem. Soc. 112, 4197 (1990), doi: 10.1021/ja00167a015
  • [26] C.S. Lent, P.D. Tougaw, J. Appl. Phys. 74, 6227 (1993), doi: 10.1063/1.355196
  • [27] K. Takatsuka, T. Yonehara, K. Hanasaki, Chemical Theory beyond the Born-Oppenheimer Paradigm: Nonadiabatic Electronic and Nuclear Dynamics in Chemical Reactions, World Scientific Publishing, Singapore 2015, doi: 10.1142/9291
  • [28] I.B. Bersuker, V.Z. Polinger, Vibronic Interactions in Molecules and Crystals, Springer, Berlin, 1989, doi: 10.1002/bbpc.19900940819
  • [29] I.B. Bersuker, The Jahn-Teller Effect, Cambridge University Press, 2006
  • [30] B. Tsukerblat, A. Palii, J.M. Clemente-Juan, E. Coronado, in : Progress in Theoretical Chemistry and Physics, Vol. 23, Vibronic Interactions and the Jahn-Teller Effect, Eds: M. Atanasov, C. Daul, P.L.W. Tregenna-Piggott, Springer, Berlin, 2011, p. 39
  • [31] B. Tsukerblat, A. Palii, J.M. Clemente-Juan, A. Gaita-Arińo, E. Coronado, Int. J. Quantum Chem. 112, 2957 (2012), doi: 10.1002/qua.24152
  • [32] J.M. Clemente-Juan, A. Palii, E. Coronado, B. Tsukerblat, J. Chem. Theory & Comp. 12, 3545 (2016), doi: 10.1021/acs.jctc.6b00267

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p002kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.