Journal
Article title
Title variants
Languages of publication
Abstracts
Normalized quantum Stokes operators introduced in Phys. Rev. A 95, 042113 (2017) enable one to better observe non-classical correlations of entangled states of optical fields with undefined photon numbers. For a given run of an experiment the new quantum Stokes operators are defined by the differences of the measured intensities (or photon numbers) at the exits of a polarizer divided by their sum. It is this ratio that is to be averaged, and not the numerator and the denominator separately, as it is in the conventional approach. The new approach allows to construct more robust entanglement indicators against photon-loss noise, which can detect entangled optical states in situations in which witnesses using standard Stokes operators fail. Here we show an extension of this approach beyond phenomena linked with polarization. We discuss EPR-like experiments involving correlations produced by optical beams in a multi-mode bright squeezed vacuum state. EPR-inspired entanglement conditions for all prime numbers of modes are presented. The conditions are much more resistant to noise due to photon loss than similar ones which employ standard Glauber-like intensity, correlations.
Discipline
- 42.50.-p: Quantum optics(for lasers, see 42.55.-f and 42.60.-v; see also 42.65.-k Nonlinear optics; 03.65.-w Quantum mechanics)
- 03.67.Bg: Entanglement production and manipulation(for entanglement in Bose-Einstein condensates, see 03.75.Gg)
- 03.65.Ud: Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.)(for entanglement production and manipulation, see 03.67.Bg; for entanglement measures, witnesses etc., see 03.67.Mn; for entanglement in Bose-Einstein condensates, see 03.75.Gg)
- 03.67.Mn: Entanglement measures, witnesses, and other characterizations(see also 03.65.Ud Entanglement and quantum nonlocality; 42.50.Dv Quantum state engineering and measurements in quantum optics)
Journal
Year
Volume
Issue
Pages
1713-1718
Physical description
Dates
published
2017-12
Contributors
author
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
- Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
author
- Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
author
- Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
- Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
author
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore
author
- Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
References
- [1] M. Żukowski, W. Laskowski, M. Wieśniak, Phys. Rev. A 95, 042113 (2017), doi: 10.1103/PhysRevA.95.042113
- [2] M. Zukowski, M. Wieśniak, W. Laskowski, Phys. Rev. A 94, 020102(R) (2016), doi: 10.1103/PhysRevA.94.020102
- [3] M.D. Reid, D.F. Walls, Phys. Rev. A 34, 1260 (1986), doi: 10.1103/PhysRevA.34.1260
- [3a] D.F. Walls, G.J. Milburn, Quantum Optics, Springer, Berlin 1994. http://springer.com/br/book/9783540588313
- [4] C. Simon, D. Bouwmeester, Phys. Rev. Lett. 91, 053601 (2003), doi: 10.1103/PhysRevLett.91.053601
- [5] K. Rosolek, K. Kostrzewa, A. Dutta, W. Laskowski, M. Wieśniak, M. Żukowski, Phys. Rev. A 95, 042119 (2017), doi: 10.1103/PhysRevA.95.042119
- [6] C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987), doi: 10.1103/PhysRevLett.59.2044
- [7] J. Ryu, M. Marciniak, M. Wieśniak, M Żukowski, arXiv: 1601.02233 http://arXiv.org/abs/1601.02233
- [8] M. Żukowski, A. Zeilinger, M.A. Horne, Phys. Rev. A 55, 2564 (1997), doi: 10.1103/PhysRevA.55.2564
- [9] A. Zeilinger, H.J. Bernstein, D.M. Greenberger, H.A. Horne, M. Żukowski, Controlling Entanglement in Quantum Optics, in: Quantum Control Measurement, Eds. H. Ezawa, Y. Murayama, Elsevier Sci., 1993, p. 9
- [9a] A. Zeilinger, M. Żukowski, M.A. Horne, H.J. Bernstein, D.M. Greenberger, Einstein-Podolsky-Rosen Correlations in Higher Dimensions, in: Fundamental Aspects of Quantum Theory, Eds. J. Anandan, J.L. Safko, World Scientific, Singapore 1993, p. 153
- [10] N.G. Walker, J.E. Carroll, Opt. Quantum Electron. 18, 355 (1986), doi: 10.1007/BF02032562
- [10a] N.G. Walker, J. Mod. Opt. 34, 15 (1987), doi: 10.1103/PhysRevLett.73.58
- [11] M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73, 58 (1994), doi: 10.1103/PhysRevLett.73.58
- [12a] C. Schaeff, R. Polster, M. Huber, S. Ramelow, A. Zeilinger, Optica 2, 523 (2015), doi: 10.1364/OPTICA.2.000523
- [12b] C. Schaeff, R. Polster, M. Huber, S. Ramelow, A. Zeilinger, arXiv: 1502.06504 http://arxiv.org/abs/1502.06504
- [12c] K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger M. Żukowski, Applied Physics B: Lasers Optics 60 (2-3), S111 (1995) http://arXiv.org/abs/1502.06504
- [12d] K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger M. Żukowski, Applied Physics B: Lasers Optics 60 (2-3), S111
- [13] J.W. Pan, Z.B. Chen, C.Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Rev. Mod. Phys. 84, 777 (2012), doi: 10.1103/RevModPhys.84.777
- [14] W.K. Wootters, B.D. Fields, Ann. Phys. 191, 363 (1989), doi: 10.1016/0003-4916(89)90322-9
- [15] I.D. Ivanovic, J. Phys. A 14, 3241 (1981), doi: 10.1088/0305-4470/14/12/019
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n6p12kz