Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 6 | 1699-1703

Article title

Edge Switching Transformations of Quantum Graphs

Content

Title variants

Languages of publication

EN

Abstracts

EN
Discussed here are the effects of basics graph transformations on the spectra of associated quantum graphs. In particular it is shown that under an edge switch the spectrum of the transformed Schrödinger operator is interlaced with that of the original one. By implication, under edge swap the spectra before and after the transformation, denoted by {Eₙ}^{∞}ₙ₌₁ and {Ẽₙ}^{∞}ₙ₌₁ correspondingly, are level-2 interlaced, so that Eₙ-₂ ≤ Ẽₙ ≤ Eₙ₊₂. The proofs are guided by considerations of the quantum graphs' discrete analogs.

Keywords

EN

Year

Volume

132

Issue

6

Pages

1699-1703

Physical description

Dates

published
2017-12

Contributors

author
  • Departments of Physics and Mathematics, Princeton University, Princeton NJ 08540, USA
author
  • Institute of Mechanical Engineering, University of Applied Sciences Magdeburg-Stendal, D-39114 Magdeburg, Germany
author
  • Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
author
  • Zentrum Mathematik, TU München, Boltzmannstr. 3, 85747 Garching, Germany

References

  • [1] L. Pauling, J. Chem. Phys. 4, 673 (1936), doi: 10.1063/1.1749766
  • [2] T. Kottos, U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997), doi: 10.1103/PhysRevLett.79.4794
  • [3] T. Kottos, U. Smilansky, Ann. Phys. 274, 76 (1999), doi: 10.1006/aphy.1999.5904
  • [4] S. Gnutzmann, Uzy Smilansky, Adv. Phys. 55, 527 (2006), doi: 10.1080/00018730600908042
  • [5] P. Kuchment, Analysis on Graphs, its Applications, Proc. Symp. Pure. Math. 77, AMS 2008, p. 291, doi: 10.1090/pspum/077
  • [6] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, AMS Mathematical Surveys and Monographs, vol. 186, 2012, doi: 10.1090/surv/186
  • [7] O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Mathematics 2039, Springer 2012, doi: 10.1007/978-3-642-23840-6
  • [8] J.J. Seidel, in: Proc. Fifth Southeastern Conference on Combinatorics, Graph Theory, Computing Congressus Numerantium X, Utilitas Math, Winnipeg, MB (1974), p.125 http://catalog.hathitrust.org/Record/000500884
  • [9] B. Gutkin, U. Smilansky, J. Phys A. 31, 6061 (2001), doi: 10.1088/0305-4470/34/31/301
  • [10] M. Kac, Am. Math. Month. 73, 1 (1966), doi: 10.2307/2313748
  • [11] B. Simon, in: CRM Proceedings and Lecture Notes, Vol. 8, 1995, p. 109
  • [12] S. Albeverio, K. Pankrashkin, J. Phys A 38, 4859 (2005), doi: 10.1088/0305-4470/38/22/010
  • [13] J. Behrndt, M.M. Malamud, H. Neidhardt, Proc. Lond. Math. Soc. 97, 568 (2008), doi: 10.1112/plms/pdn016
  • [14] H. Weyl, Math. Ann. 71, 441 (1912), doi: 10.1007/BF01456804
  • [15] D. Hundertmark, E.H. Lieb, L.E. Thomas, Adv. Theor. Math. Phys. 2, 719 (1998), doi: 10.4310/ATMP.1998.v2.n4.a2
  • [16] F.J. Dyson, J. Math. Phys. 3, 140 (1962), doi: 10.1063/1.1703773
  • [16a] F.J. Dyson, J. Math. Phys. 3, 157 (1962), doi: 10.1063/1.170377
  • [16] F.J. Dyson, J. Math. Phys. 3, 166 (1962), doi: 10.1063/1.170377
  • [17] C.H. Joyner, U. Smilansky, J. Phys. A: Math. Theor. 48 (2015), doi: 10.1088/1751-8113/48/25/255101
  • [18] R. Band, G. Berkolaiko, H. Raz, U. Smilansky, Comm. Math. Phys. 311, 815 (2012), doi: 10.1007/s00220-011-1384-9
  • [19] O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Zyczkowski, L. Sirko, Phys. Rev. E 69, 056205 (2004), doi: 10.1103/PhysRevE.69.056205
  • [20] P. Kurasov, G. Malenová, S. Naboko, J. Phys. A 46, 275309 (2013), doi: 10.1088/1751-8113/46/27/275309

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n6p09kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.