PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 6 | 1695-1698
Article title

Torsion in Cohomology Groups of Configuration Spaces

Content
Title variants
Languages of publication
EN
Abstracts
EN
An important and surprising discovery in physics in the last fifty years is that if quantum particles are constrained to move in two rather than three dimensions, they can in principle exhibit new forms of quantum statistics, called anyons. Although anyons were initially only a theoretical concept, they quickly proved to be useful in explaining one of the most significant discoveries of condensed matter physics in the last century, i.e. fractional quantum Hall effect. Recently, it was shown that particles constrained to move on a graph can exhibit even more exotic forms of quantum statistics, depending on the topology of the graph. In this paper we discuss what possible new quantum signatures of topology may arise when one takes into account more complex topological information, called higher (co)homology groups, which may also be associated with graph configuration spaces. In particular we focus on the significance of a torsion component.
Year
Volume
132
Issue
6
Pages
1695-1698
Physical description
Dates
published
2017-12
References
  • [1] M. Fierz, Helvet. Phys. Acta 12, 3 (1939) http://inspirehep.net/record/45336?ln=en
  • [2] W. Pauli, Phys. Rev. 58, 716 (1940), doi: 10.1103/PhysRev.58.716
  • [3] J. Schwinger, Phys. Rev. 82, 914 (1951), doi: 10.1103/PhysRev.82.914
  • [4] R. Feynman, Quantum Electrodynamics, Benjamin Cummings, Menlo Park (CA) 1961 http://inis.iaea.org/search/search.aspx?orig_q=RN:21029946
  • [5] M.V. Berry, J.M. Robbins, Proc. R. Soc. Lond. A 453, 1771 (1997), doi: 10.1098/rspa.1997.0096
  • [6] M.F. Atiyah, Philos. Trans. R. Soc. Lond. A 359, 1 (2001), doi: 10.1098/rsta.2001.0840
  • [7] M.F. Atiyah, in: Surveys in Differential Geometry, Vol. 7, International Press, Somerville (MA) 2001, p. 1 http://intlpress.com/site/pub/pages/books/items/00000112/index.html
  • [8] M. Atiyah, P. Sutcliffe, Proc. Math. Phys. Eng. Sci. 458, 1089 (2002), doi: 10.1098/rspa.2001.0913
  • [9] J.M. Souriau, Structure des systèmes dynamiques, Dunod, Paris 1970, (in French) http://gabay-editeur.com/SOURIAU-Structure-des-systemes-dynamiques-1970
  • [10] J.M. Leinaas, J. Myrheim, Nuovo Cim. 37B, 1 (1977), doi: 10.1007/BF02727953
  • [11] J.S. Dowker, J. Phys. A Math. Gen. 18, 3521 (1985), doi: 10.1088/0305-4470/18/18/015
  • [12] M.G.G. Laidlaw, C.M. DeWitt, Phys. Rev. D 3, 1375 (1971), doi: 10.1103/PhysRevD.3.1375
  • [13] F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Sci., Singapore 1990, doi: 10.1142/0961
  • [14] J.M. Harrison, J.P. Keating, J.M. Robbins, A. Sawicki, Commun. Math. Phys. 330, 1293 (2014), doi: 10.1007/s00220-014-2091-0
  • [15] A. Abrams, Ph.D. Thesis, UC Berkley, 2000 http://home.wlu.edu/~abramsa/publications/thesis.ps
  • [16] K.H. Ko, H.W. Park, Discr. Comput. Geom. 48, 915 (2012), doi: 10.1007/s00454-012-9459-8
  • [17] R. Forman, Adv. Math. 134, 90145 (1998), doi: 10.1006/aima.1997.1650
  • [18] D. Farley, L. Sabalka, Algebr. Geom. Topol. 5, 1075 (2005), doi: 10.2140/agt.2005.5.1075
  • [19] D. Farley, L. Sabalka, J. Pure Appl. Algebra 212, 53 (2008), doi: 10.1016/j.jpaa.2007.04.011
  • [20] K. Barnett, M. Farber, arXiv: 0903.2180 (2009), http://arXiv.org/abs/0903.2180,
  • [21] M. Farber, in: Algorithmic Foundations of Robotics VI, Eds. M. Erdmann, D. Hsu, M. Overmars, A. Frank van der Stappen, Springer, 2005, p. 123 http://springer.com/us/book/9783540257288#otherversion=9783642065132
  • [22] A. Sawicki, J. Phys. A Math. Theor. 45, 505202 (2012), doi: 10.1088/1751-8113/45/50/505202
  • [23] T. Maciążek, A. Sawicki, J. Math. Phys. 58, 062103 (2017), doi: 10.1063/1.4984309
  • [24] J.K. Asbóth, L. Oroszlány, A. Pályi, in: Lecture Notes in Physics, 2016, p. 919, doi: 10.1007/978-3-319-25607-8
  • [25] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002 http://lehmanns.de/shop/mathematik-informatik/2678068-9780521795401-algebraic-topology
  • [26] A. Hatcher, Vector bundles and K theory, unfinished book http://math.cornell.edu/~hatcher/VBKT/VBpage.html
  • [27] J. Cheeger, J. Simons, Differential characters and geometric invariants, Lecture Notes in Mathematics, Vol. 1167, Springer Verlag, 1985, p. 50, doi: 10.1007/BFb0075216
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv132n6p08kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.