We discuss behaviour of the spectral gap for quantum graphs when two metric graphs are glued together. It appears that precise answer to this question can be given using a natural generalisation of the Titchmarsh-Weyl M-functions.
Dept. of Mathematics, Stockholm Univ., 106 91, Stockholm, Sweden
References
[1] P. Kurasov, Ark. Mat. 46, 95 (2008), doi: 10.1007/s11512-007-0059-4
[2] P. Kurasov, J. Func. Anal. 254, 934 (2008), doi: 10.1016/j.jfa.2007.11.007
[3] M. Aizenman, H. Schanz, U. Smilansky, S. Warzel, arXiv: 1710.07958 http://arXiv.org/abs/1710.07958
[4] R. Band, G. Lévy, Ann. Henri Poincaré 18, 3269 (2017), doi: 10.1007/s00023-017-0601-2
[5] G. Berkolaiko, J. Kennedy, P. Kurasov, D. Mugnolo, J. Phys. A 50, 365201 (2017), doi: 10.1088/1751-8121/aa8125
[6] G. Berkolaiko, W. Liu, J. Math. Anal. Appl. 445, 803 (2017), doi: 10.1016/j.jmaa.2016.07.026
[7] N.T. Do, P. Kuchment, B. Ong, On resonant spectral gaps in quantum graphs. Functional analysis and operator theory for quantum physics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich 2017, p. 213, doi: 10.4171/175-1/11
[8] J. Kennedy, P. Kurasov, G. Malenova, D. Mugnolo, Ann. Henri Poincaré 17, 2439 (2016), doi: 10.1007/s00023-016-0460-2
[9] P. Kurasov, G. Malenová, S. Naboko, J. Phys. A 46, 275309 (2013), doi: 10.1088/1751-8113/46/27/275309
[10] P. Kurasov, S. Naboko, J. Spectral Theory 4, 211 (2014), doi: 10.4171/JST/67
[11] J. Rohleder, Proc. Am. Math. Soc. 145, 2119 (2017), doi: 10.1090/proc/13403
[12] P. Kurasov, S. Naboko, Surgery of graphs and spectral gap: Titchmarsh-Weyl operator-function approach, preprint 2017
[13] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs. Mathematical Surveys and Monographs, Vol. 186, American Mathematical Society, Providence (RI), 2013
[14] P. Kurasov, Quantum graphs: spectral theory and inverse problems, to appear in Brikhäuser, 2018
[15] O. Post, Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics, Vol. 2039, Springer, Heidelberg 2012, doi: 10.1007/978-3-642-23840-6
[16] M. Fiedler, Czechoslov. Math. J. 23 (98), 298 (1973) http://zbmath.org/?q=an:0265.05119
[17] S. Nicaise, Bull. Sci. Math. 111, 401 (1987)
[18] L. Friedlander, Ann. Inst. Fourier 55, 199 (2005), doi: 10.5802/aif.2095
[19] H. Weyl, Math. Ann. 71, 441 (1912) (in German), doi: 10.1007/BF01456804
[21] F. Gesztesy, E. Tsekanovskii, Math. Nachr. 218, 61 (2000), doi: 10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.0.CO;2-D
[22] S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, London Mathematical Society Lecture Note Series, Vol. 271, Cambridge University Press, Cambridge 2000, doi: 10.1017/CBO9780511758904
[23] R. Band, P. Kurasov, On Courant Theorem for Quantum Graphs, in preparation
[24] J. Behrndt, A. Luger, J. Phys. A 43, 474006 (2010), doi: 10.1088/1751-8113/43/47/474006